Suppr超能文献

基于表面导向的载细胞微凝胶组装。

Surface-directed assembly of cell-laden microgels.

机构信息

Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA.

出版信息

Biotechnol Bioeng. 2010 Feb 15;105(3):655-62. doi: 10.1002/bit.22552.

Abstract

Cell-laden microscale hydrogels (microgels) can be used as tissue building blocks and assembled to create 3D tissue constructs with well-defined microarchitecture. In this article, we present a bottom-up approach to achieve microgel assembly on a patterned surface. Driven by surface tension, the hydrophilic microgels can be assembled into well-defined shapes on a glass surface patterned with hydrophobic and hydrophilic regions. We found that the cuboidic microgels ( approximately 100-200 microm in width) could self-assemble into defined shapes with high fidelity to the surface patterns. The microgel assembly process was improved by increasing the hydrophilicity of the microgels and reducing the surface tension of the surrounding solution. The assembled microgels were stabilized by a secondary crosslinking step. Assembled microgels containing cells stained with different dyes were fabricated to demonstrate the application of this approach for engineering microscale tissue constructs containing multiple cell types. This bottom-up approach enables rapid fabrication of cell-laden microgel assemblies with pre-defined geometrical and biological features, which is easily scalable and can be potentially used in microscale tissue engineering applications.

摘要

细胞负载的微尺度水凝胶(微凝胶)可用作组织构建块,并组装成具有明确定义的微观结构的 3D 组织构建体。在本文中,我们提出了一种自下而上的方法,可在图案化表面上实现微凝胶组装。在具有亲水性和疏水性区域的图案化玻璃表面上,受表面张力的驱动,亲水性微凝胶可组装成具有明确定义形状的微凝胶。我们发现,(约 100-200 微米宽)的立方体形微凝胶可以高精度地自组装成与表面图案一致的形状。通过提高微凝胶的亲水性并降低周围溶液的表面张力,可以改善微凝胶的组装过程。通过二次交联步骤稳定组装的微凝胶。制备了含有用不同染料染色的细胞的组装微凝胶,以证明该方法在构建含有多种细胞类型的微尺度组织构建体中的应用。这种自下而上的方法能够快速制造具有预定义几何和生物学特征的细胞负载微凝胶组装体,易于扩展,可潜在用于微尺度组织工程应用。

相似文献

1
Surface-directed assembly of cell-laden microgels.
Biotechnol Bioeng. 2010 Feb 15;105(3):655-62. doi: 10.1002/bit.22552.
2
Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9522-7. doi: 10.1073/pnas.0801866105. Epub 2008 Jul 3.
3
Method of Bottom-Up Directed Assembly of Cell-Laden Microgels.
Cell Mol Bioeng. 2008;1(2):157-162. doi: 10.1007/s12195-008-0020-z.
4
Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells.
Acta Biomater. 2018 Sep 1;77:48-62. doi: 10.1016/j.actbio.2018.07.015. Epub 2018 Jul 10.
5
Two-phase bioreactor system for cell-laden hydrogel assembly.
Biotechnol Prog. 2011 Mar-Apr;27(2):466-72. doi: 10.1002/btpr.515. Epub 2011 Feb 22.
6
Interface-directed self-assembly of cell-laden microgels.
Small. 2010 Apr 23;6(8):937-44. doi: 10.1002/smll.200902326.
7
Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels.
Biotechnol Bioeng. 2011 Jul;108(7):1693-703. doi: 10.1002/bit.23102. Epub 2011 Mar 11.
8
Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues.
Mater Today Chem. 2019 Jun;12:61-70. doi: 10.1016/j.mtchem.2018.11.009. Epub 2019 Jan 14.
10
Delivery of Endothelial Cell-Laden Microgel Elicits Angiogenesis in Self-Assembling Ultrashort Peptide Hydrogels In Vitro.
ACS Appl Mater Interfaces. 2021 Jun 30;13(25):29281-29292. doi: 10.1021/acsami.1c03787. Epub 2021 Jun 18.

引用本文的文献

1
Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects.
Micromachines (Basel). 2021 Dec 31;13(1):75. doi: 10.3390/mi13010075.
2
Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues.
Mater Today Chem. 2019 Jun;12:61-70. doi: 10.1016/j.mtchem.2018.11.009. Epub 2019 Jan 14.
3
Advances in engineering hydrogels.
Science. 2017 May 5;356(6337). doi: 10.1126/science.aaf3627.
4
A decade of progress in tissue engineering.
Nat Protoc. 2016 Oct;11(10):1775-81. doi: 10.1038/nprot.2016.123. Epub 2016 Sep 1.
5
3D Printing for Tissue Engineering.
Isr J Chem. 2013 Oct 1;53(9-10):805-814.
6
Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions.
Langmuir. 2015 Dec 8;31(48):13165-71. doi: 10.1021/acs.langmuir.5b03501. Epub 2015 Nov 25.
8
Microscale Strategies for Generating Cell-Encapsulating Hydrogels.
Polymers (Basel). 2012 Sep;4(3):1554. doi: 10.3390/polym4031554.
9
The expanding world of tissue engineering: the building blocks and new applications of tissue engineered constructs.
IEEE Rev Biomed Eng. 2013;6:47-62. doi: 10.1109/RBME.2012.2233468. Epub 2012 Dec 20.
10
Emerging technologies for assembly of microscale hydrogels.
Adv Healthc Mater. 2012 Mar;1(2):149-158. doi: 10.1002/adhm.201200011.

本文引用的文献

2
Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9522-7. doi: 10.1073/pnas.0801866105. Epub 2008 Jul 3.
3
Guided and fluidic self-assembly of microstructures using railed microfluidic channels.
Nat Mater. 2008 Jul;7(7):581-7. doi: 10.1038/nmat2208. Epub 2008 Jun 15.
4
A microwell array system for stem cell culture.
Biomaterials. 2008 Feb;29(6):752-63. doi: 10.1016/j.biomaterials.2007.10.030. Epub 2007 Nov 14.
5
Microengineered hydrogels for tissue engineering.
Biomaterials. 2007 Dec;28(34):5087-92. doi: 10.1016/j.biomaterials.2007.07.021. Epub 2007 Aug 17.
6
Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels.
FASEB J. 2007 Mar;21(3):790-801. doi: 10.1096/fj.06-7117com. Epub 2006 Dec 28.
8
Vascularized organoid engineered by modular assembly enables blood perfusion.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11461-6. doi: 10.1073/pnas.0602740103. Epub 2006 Jul 24.
9
Micromolding of shape-controlled, harvestable cell-laden hydrogels.
Biomaterials. 2006 Nov;27(31):5391-8. doi: 10.1016/j.biomaterials.2006.06.005. Epub 2006 Jul 7.
10
Direct confinement of individual viruses within polyethylene glycol (PEG) nanowells.
Nano Lett. 2006 Jun;6(6):1196-201. doi: 10.1021/nl060571a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验