Suppr超能文献

工程水凝胶的进展

Advances in engineering hydrogels.

作者信息

Zhang Yu Shrike, Khademhosseini Ali

机构信息

Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Science. 2017 May 5;356(6337). doi: 10.1126/science.aaf3627.

Abstract

Hydrogels are formed from hydrophilic polymer chains surrounded by a water-rich environment. They have widespread applications in various fields such as biomedicine, soft electronics, sensors, and actuators. Conventional hydrogels usually possess limited mechanical strength and are prone to permanent breakage. Further, the lack of dynamic cues and structural complexity within the hydrogels has limited their functions. Recent developments include engineering hydrogels that possess improved physicochemical properties, ranging from designs of innovative chemistries and compositions to integration of dynamic modulation and sophisticated architectures. We review major advances in designing and engineering hydrogels and strategies targeting precise manipulation of their properties across multiple scales.

摘要

水凝胶由被富水环境包围的亲水性聚合物链形成。它们在生物医学、软电子学、传感器和致动器等各个领域都有广泛应用。传统水凝胶通常机械强度有限,容易发生永久性断裂。此外,水凝胶内部缺乏动态线索和结构复杂性限制了它们的功能。最近的进展包括设计具有改进物理化学性质的工程水凝胶,范围从创新化学和组成的设计到动态调制和复杂结构的整合。我们综述了水凝胶设计和工程方面的主要进展以及针对跨多个尺度精确调控其性质的策略。

相似文献

1
Advances in engineering hydrogels.
Science. 2017 May 5;356(6337). doi: 10.1126/science.aaf3627.
2
Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
Acc Chem Res. 2022 Jun 7;55(11):1533-1545. doi: 10.1021/acs.accounts.2c00046. Epub 2022 Apr 12.
3
Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
Acc Chem Res. 2017 Apr 18;50(4):723-732. doi: 10.1021/acs.accounts.6b00584. Epub 2017 Feb 15.
4
Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces.
Adv Colloid Interface Sci. 2022 Oct;308:102749. doi: 10.1016/j.cis.2022.102749. Epub 2022 Aug 9.
5
Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation.
Chem Commun (Camb). 2020 Nov 18;56(89):13731-13747. doi: 10.1039/d0cc05130f. Epub 2020 Oct 23.
6
An Amphiphilic Entangled Network Design Toward Ultratough Hydrogels.
Adv Mater. 2023 Jul;35(28):e2301532. doi: 10.1002/adma.202301532. Epub 2023 May 25.
7
Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties.
Chem Rev. 2021 Apr 28;121(8):4309-4372. doi: 10.1021/acs.chemrev.0c01088. Epub 2021 Apr 12.
8
Recent Advances in Design Strategies of Tough Hydrogels.
Macromol Rapid Commun. 2022 Aug;43(15):e2200075. doi: 10.1002/marc.202200075. Epub 2022 May 6.
9
Photoredox-Mediated Designing and Regulating Metal-Coordinate Hydrogels for Programmable Soft 3D-Printed Actuators.
ACS Macro Lett. 2022 Aug 16;11(8):967-974. doi: 10.1021/acsmacrolett.2c00362. Epub 2022 Jul 13.
10
Mussel-inspired hydrogels: from design principles to promising applications.
Chem Soc Rev. 2020 Jun 7;49(11):3605-3637. doi: 10.1039/c9cs00849g. Epub 2020 May 12.

引用本文的文献

1
Recent Advances in Hydrogel-Promoted Photoelectrochemical Sensors.
Biosensors (Basel). 2025 Aug 10;15(8):524. doi: 10.3390/bios15080524.
4
Zinc Peroxide-Mediated In Situ Forming Hydrogels for Endogenous Tissue Regeneration.
Biomater Res. 2025 Aug 12;29:0238. doi: 10.34133/bmr.0238. eCollection 2025.
5
Hydrogel technologies in andrology: advances in research and prospective applications.
Front Pharmacol. 2025 Jul 28;16:1635007. doi: 10.3389/fphar.2025.1635007. eCollection 2025.
6
Immunomodulatory biomaterials for osteoarthritis: Targeting inflammation and enhancing cartilage regeneration.
Mater Today Bio. 2025 Jul 16;34:102100. doi: 10.1016/j.mtbio.2025.102100. eCollection 2025 Oct.
8
Phase-specific and laser-modulated polydopamine-chlorella-curdlan hydrogels: pioneering a melanoma integrative therapy.
Theranostics. 2025 Jun 23;15(15):7627-7652. doi: 10.7150/thno.113417. eCollection 2025.
9
Surface-engineered hydrophobic hydrogels via cholesterol micelle rearrangement for robust wet adhesion and oral mucositis therapy.
Mater Today Bio. 2025 Jul 22;34:102126. doi: 10.1016/j.mtbio.2025.102126. eCollection 2025 Oct.

本文引用的文献

1
Hybrid Hydrogels with Extremely High Stiffness and Toughness.
ACS Macro Lett. 2014 Jun 17;3(6):520-523. doi: 10.1021/mz5002355. Epub 2014 May 19.
2
Stiff, strong, and tough hydrogels with good chemical stability.
J Mater Chem B. 2014 Oct 21;2(39):6708-6713. doi: 10.1039/c4tb01194e. Epub 2014 Sep 9.
3
Strong, Tough, Stretchable, and Self-Adhesive Hydrogels from Intrinsically Unstructured Proteins.
Adv Mater. 2017 Mar;29(10). doi: 10.1002/adma.201604743. Epub 2017 Jan 6.
4
Make better, safer biomaterials.
Nature. 2016 Dec 14;540(7633):335-337. doi: 10.1038/540335a.
5
4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.
Biofabrication. 2016 Dec 2;9(1):012001. doi: 10.1088/1758-5090/9/1/012001.
6
Rapid Continuous Multimaterial Extrusion Bioprinting.
Adv Mater. 2017 Jan;29(3). doi: 10.1002/adma.201604630. Epub 2016 Nov 17.
7
An injectable shear-thinning biomaterial for endovascular embolization.
Sci Transl Med. 2016 Nov 16;8(365):365ra156. doi: 10.1126/scitranslmed.aah5533.
8
Intrinsically stretchable and healable semiconducting polymer for organic transistors.
Nature. 2016 Nov 17;539(7629):411-415. doi: 10.1038/nature20102.
9
Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip.
Biomaterials. 2016 Dec;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003. Epub 2016 Sep 5.
10
Multimaterial 4D Printing with Tailorable Shape Memory Polymers.
Sci Rep. 2016 Aug 8;6:31110. doi: 10.1038/srep31110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验