Bong Ki Wan, Kim Jae Jung, Cho Hansang, Lim Eugene, Doyle Patrick S, Irimia Daniel
Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School , Charlestown, Massachusetts 02129, United States.
Department of Chemical and Biological Engineering, Korea University , Anam-dong, Seongbuk-gu, Seoul 136-713, Korea.
Langmuir. 2015 Dec 8;31(48):13165-71. doi: 10.1021/acs.langmuir.5b03501. Epub 2015 Nov 25.
Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of anisotropic hydrogel microparticles with tunable cell-adhesive regions as first step toward micropatterned cell cultures on particles. We employed stop flow lithography (SFL), the coupling reaction between amine and N-hydroxysuccinimide (NHS) and streptavidin-biotin chemistry to adjust the localization of conjugated collagen and poly-L-lysine on the surface of microscale particles. Using the new particles, we demonstrate the attachment and formation of tight junctions between brain endothelial cells. We also demonstrate the geometric patterning of breast cancer cells on particles with heterogeneous collagen coatings. This new approach avoids the exposure of cells to potentially toxic photoinitiators and ultraviolet light and decouples in time the microparticle synthesis and the cell culture steps to take advantage of the most recent advances in cell patterning available for traditional culture substrates.
细胞粘附颗粒在生物技术、复杂组织的生物工程和生物医学研究中具有重大意义。它们的应用范围广泛,从提高贴壁依赖性细胞培养效率的平台,到在异质结构中加载细胞的构建模块,再到克隆群体生长监测以及细胞分选。尽管现有细胞粘附颗粒很有用,但目前只能用于均质细胞培养。在此,我们报告了具有可调细胞粘附区域的各向异性水凝胶微粒的设计,这是朝着在微粒上进行微图案化细胞培养迈出的第一步。我们采用了停流光刻法(SFL)、胺与N-羟基琥珀酰亚胺(NHS)之间的偶联反应以及链霉亲和素-生物素化学方法,来调整共轭胶原蛋白和聚-L-赖氨酸在微米级颗粒表面的定位。使用这些新型颗粒,我们证明了脑内皮细胞之间紧密连接的附着和形成。我们还展示了在具有异质胶原蛋白涂层的颗粒上乳腺癌细胞的几何图案化。这种新方法避免了细胞暴露于潜在有毒的光引发剂和紫外线下,并在时间上分离了微粒合成和细胞培养步骤,以利用传统培养底物在细胞图案化方面的最新进展。