Suppr超能文献

振荡的大脑:复杂而可靠。

The oscillating brain: complex and reliable.

机构信息

Phyllis Green and Randolph Cōwen Institute for Pediatric Neuroscience at the New York University Child Study Center, New York, NY, USA.

出版信息

Neuroimage. 2010 Jan 15;49(2):1432-45. doi: 10.1016/j.neuroimage.2009.09.037. Epub 2009 Sep 24.

Abstract

The human brain is a complex dynamic system capable of generating a multitude of oscillatory waves in support of brain function. Using fMRI, we examined the amplitude of spontaneous low-frequency oscillations (LFO) observed in the human resting brain and the test-retest reliability of relevant amplitude measures. We confirmed prior reports that gray matter exhibits higher LFO amplitude than white matter. Within gray matter, the largest amplitudes appeared along mid-brain structures associated with the "default-mode" network. Additionally, we found that high-amplitude LFO activity in specific brain regions was reliable across time. Furthermore, parcellation-based results revealed significant and highly reliable ranking orders of LFO amplitudes among anatomical parcellation units. Detailed examination of individual low frequency bands showed distinct spatial profiles. Intriguingly, LFO amplitudes in the slow-4 (0.027-0.073 Hz) band, as defined by Buzsáki et al., were most robust in the basal ganglia, as has been found in spontaneous electrophysiological recordings in the awake rat. These results suggest that amplitude measures of LFO can contribute to further between-group characterization of existing and future "resting-state" fMRI datasets.

摘要

人脑是一个复杂的动态系统,能够产生多种振荡波以支持大脑功能。我们使用 fMRI 检查了人类静息大脑中观察到的自发低频振荡 (LFO) 的幅度以及相关幅度测量的测试-重测可靠性。我们证实了先前的报告,即灰质的 LFO 幅度高于白质。在灰质内,最大的幅度出现在与“默认模式”网络相关的中脑结构上。此外,我们发现特定脑区的高幅度 LFO 活动在时间上是可靠的。此外,基于分割的结果显示了在解剖分割单元之间 LFO 幅度的显著且高度可靠的排序顺序。对单个低频带的详细检查显示出不同的空间分布。有趣的是,正如在清醒大鼠的自发电生理记录中发现的那样,由 Buzsáki 等人定义的慢-4(0.027-0.073 Hz)频段的 LFO 幅度在基底神经节中最为稳健。这些结果表明,LFO 的幅度测量可以有助于进一步对现有和未来“静息状态” fMRI 数据集进行组间特征描述。

相似文献

1
The oscillating brain: complex and reliable.
Neuroimage. 2010 Jan 15;49(2):1432-45. doi: 10.1016/j.neuroimage.2009.09.037. Epub 2009 Sep 24.
2
Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics.
Neuroimage. 2011 Feb 14;54(4):2950-9. doi: 10.1016/j.neuroimage.2010.10.046. Epub 2010 Oct 23.
3
Frequency-dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study.
Neurosci Lett. 2016 Feb 12;614:105-11. doi: 10.1016/j.neulet.2016.01.012. Epub 2016 Jan 12.
4
Frequency-specific alternations in the amplitude of low-frequency fluctuations in chronic tinnitus.
Front Neural Circuits. 2015 Oct 29;9:67. doi: 10.3389/fncir.2015.00067. eCollection 2015.
5
Personality traits and the amplitude of spontaneous low-frequency oscillations during resting state.
Neurosci Lett. 2011 Apr 1;492(2):109-13. doi: 10.1016/j.neulet.2011.01.067. Epub 2011 Feb 1.
6
Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.
Neuroimage. 2014 Jan 1;84:888-900. doi: 10.1016/j.neuroimage.2013.09.013. Epub 2013 Sep 18.
7
The contribution of different frequency bands of fMRI data to the correlation with EEG alpha rhythm.
Brain Res. 2014 Jan 16;1543:235-43. doi: 10.1016/j.brainres.2013.11.016. Epub 2013 Nov 22.
8
9
Magnetic resonance imaging in late-life depression: multimodal examination of network disruption.
Arch Gen Psychiatry. 2012 Jul;69(7):680-9. doi: 10.1001/archgenpsychiatry.2011.1862.

引用本文的文献

2
Problems and solutions in quantifying cerebrovascular reactivity using BOLD-MRI.
Imaging Neurosci (Camb). 2025 May 2;3. doi: 10.1162/imag_a_00556. eCollection 2025.
3
Perspectives on resting-state functional magnetic resonance imaging research in vascular dementia.
Front Aging Neurosci. 2025 Jul 4;17:1547965. doi: 10.3389/fnagi.2025.1547965. eCollection 2025.
9
The influence of post-processing methods and frequency bands on rs-fMRI: An example of electroacupuncture at Zusanli (ST36).
Neuroimage Rep. 2025 Feb 11;5(1):100238. doi: 10.1016/j.ynirp.2025.100238. eCollection 2025 Mar.
10
Divergent Longitudinal Trajectories and Neurotransmitter Associations of Striatal Subparcellation Spontaneous Activity in Major Depressive Disorder.
Biol Psychiatry Glob Open Sci. 2025 May 2;5(5):100523. doi: 10.1016/j.bpsgos.2025.100523. eCollection 2025 Sep.

本文引用的文献

1
Static and dynamic characteristics of cerebral blood flow during the resting state.
Neuroimage. 2009 Nov 15;48(3):515-24. doi: 10.1016/j.neuroimage.2009.07.006. Epub 2009 Jul 14.
2
Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults.
Am J Psychiatry. 2009 Aug;166(8):891-9. doi: 10.1176/appi.ajp.2009.08121894. Epub 2009 Jul 15.
3
Reproducibility of graph metrics of human brain functional networks.
Neuroimage. 2009 Oct 1;47(4):1460-8. doi: 10.1016/j.neuroimage.2009.05.035. Epub 2009 May 20.
4
Uncovering intrinsic modular organization of spontaneous brain activity in humans.
PLoS One. 2009;4(4):e5226. doi: 10.1371/journal.pone.0005226. Epub 2009 Apr 21.
5
Neurodegenerative diseases target large-scale human brain networks.
Neuron. 2009 Apr 16;62(1):42-52. doi: 10.1016/j.neuron.2009.03.024.
6
Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study.
Magn Reson Imaging. 2009 Oct;27(8):1019-29. doi: 10.1016/j.mri.2009.02.004. Epub 2009 Apr 17.
7
Phase vs. magnitude information in functional magnetic resonance imaging time series: toward understanding the noise.
Magn Reson Imaging. 2009 Oct;27(8):1046-57. doi: 10.1016/j.mri.2009.02.006. Epub 2009 Apr 15.
8
The global signal and observed anticorrelated resting state brain networks.
J Neurophysiol. 2009 Jun;101(6):3270-83. doi: 10.1152/jn.90777.2008. Epub 2009 Apr 1.
10
The resting brain: unconstrained yet reliable.
Cereb Cortex. 2009 Oct;19(10):2209-29. doi: 10.1093/cercor/bhn256. Epub 2009 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验