Suppr超能文献

快速检测彩色眼底照片中的视盘和黄斑。

Fast detection of the optic disc and fovea in color fundus photographs.

机构信息

Department of Ophthalmology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA.

出版信息

Med Image Anal. 2009 Dec;13(6):859-70. doi: 10.1016/j.media.2009.08.003. Epub 2009 Sep 4.

Abstract

A fully automated, fast method to detect the fovea and the optic disc in digital color photographs of the retina is presented. The method makes few assumptions about the location of both structures in the image. We define the problem of localizing structures in a retinal image as a regression problem. A kNN regressor is utilized to predict the distance in pixels in the image to the object of interest at any given location in the image based on a set of features measured at that location. The method combines cues measured directly in the image with cues derived from a segmentation of the retinal vasculature. A distance prediction is made for a limited number of image locations and the point with the lowest predicted distance to the optic disc is selected as the optic disc center. Based on this location the search area for the fovea is defined. The location with the lowest predicted distance to the fovea within the foveal search area is selected as the fovea location. The method is trained with 500 images for which the optic disc and fovea locations are known. An extensive evaluation was done on 500 images from a diabetic retinopathy screening program and 100 specially selected images containing gross abnormalities. The method found the optic disc in 99.4% and the fovea in 96.8% of regular screening images and for the images with abnormalities these numbers were 93.0% and 89.0% respectively.

摘要

本文提出了一种全自动、快速的方法,用于检测视网膜数字彩色照片中的黄斑和视盘。该方法对视盘和黄斑在图像中的位置做出了很少的假设。我们将在视网膜图像中定位结构的问题定义为回归问题。基于在该位置测量的一组特征,kNN 回归器被用于根据图像中的任意给定位置预测到感兴趣对象的像素距离。该方法将直接在图像中测量的线索与从视网膜血管分割中得出的线索相结合。对有限数量的图像位置进行距离预测,并选择预测到视盘的距离最低的点作为视盘中心。基于该位置定义黄斑搜索区域。在黄斑搜索区域内选择预测到黄斑的距离最低的位置作为黄斑位置。该方法使用 500 张已知视盘和黄斑位置的图像进行训练。对来自糖尿病视网膜病变筛查计划的 500 张图像和 100 张特别选择的包含明显异常的图像进行了广泛评估。该方法在常规筛查图像中分别找到了 99.4%和 96.8%的视盘和黄斑,而在有异常的图像中,这些数字分别为 93.0%和 89.0%。

相似文献

1
Fast detection of the optic disc and fovea in color fundus photographs.快速检测彩色眼底照片中的视盘和黄斑。
Med Image Anal. 2009 Dec;13(6):859-70. doi: 10.1016/j.media.2009.08.003. Epub 2009 Sep 4.
5
An improved gradient vector flow algorithm for optic disc segmentation.一种用于视盘分割的改进梯度向量流算法。
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4793-6. doi: 10.1109/IEMBS.2010.5628025.
6
Algorithms for digital image processing in diabetic retinopathy.糖尿病视网膜病变的数字图像处理算法。
Comput Med Imaging Graph. 2009 Dec;33(8):608-22. doi: 10.1016/j.compmedimag.2009.06.003. Epub 2009 Jul 18.
7
Vessel network detection using contour evolution and color components.基于轮廓演化和颜色分量的血管网络检测
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3129-32. doi: 10.1109/IEMBS.2010.5626090.
8
Automated localization of the optic disc and the fovea.视盘和中央凹的自动定位。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3538-41. doi: 10.1109/IEMBS.2008.4649969.
9

引用本文的文献

10
Application of artificial intelligence in ophthalmology.人工智能在眼科中的应用。
Int J Ophthalmol. 2018 Sep 18;11(9):1555-1561. doi: 10.18240/ijo.2018.09.21. eCollection 2018.

本文引用的文献

1
Robust optic disc location via combination of weak detectors.通过弱检测器组合实现稳健的视盘定位。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3542-5. doi: 10.1109/IEMBS.2008.4649970.
4
Detection of anatomic structures in human retinal imagery.人类视网膜图像中解剖结构的检测。
IEEE Trans Med Imaging. 2007 Dec;26(12):1729-39. doi: 10.1109/tmi.2007.902801.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验