Suppr超能文献

细菌群体中趋化驱动模式形成的多尺度模型

MULTISCALE MODELS OF TAXIS-DRIVEN PATTERNING IN BACTERIAL POPULATIONS.

作者信息

Xue Chuan, Othmer Hans G

机构信息

School of Mathematics, University of Minnesota, Minneapolis, MN 55455. Current address: 1735 Neil Ave. Mathematical Bioscience Institute, Columbus, OH 43210 (

出版信息

SIAM J Appl Math. 2009;70(1):133-169. doi: 10.1137/070711505.

Abstract

Spatially-distributed populations of various types of bacteria often display intricate spatial patterns that are thought to result from the cellular response to gradients of nutrients or other attractants. In the past decade a great deal has been learned about signal transduction, metabolism and movement in E. coli and other bacteria, but translating the individual-level behavior into population-level dynamics is still a challenging problem. However, this is a necessary step because it is computationally impractical to use a strictly cell-based model to understand patterning in growing populations, since the total number of cells may reach 10(12) - 10(14) in some experiments. In the past phenomenological equations such as the Patlak-Keller-Segel equations have been used in modeling the cell movement that is involved in the formation of such patterns, but the question remains as to how the microscopic behavior can be correctly described by a macroscopic equation. Significant progress has been made for bacterial species that employ a "run-and-tumble" strategy of movement, in that macroscopic equations based on simplified schemes for signal transduction and turning behavior have been derived [14, 15]. Here we extend previous work in a number of directions: (i) we allow for time-dependent signals, which extends the applicability of the equations to natural environments, (ii) we use a more general turning rate function that better describes the biological behavior, and (iii) we incorporate the effect of hydrodynamic forces that arise when cells swim in close proximity to a surface. We also develop a new approach to solving the moment equations derived from the transport equation that does not involve closure assumptions. Numerical examples show that the solution of the lowest-order macroscopic equation agrees well with the solution obtained from a Monte Carlo simulation of cell movement under a variety of temporal protocols for the signal. We also apply the method to derive equations of chemotactic movement that are governed by multiple chemotactic signals.

摘要

各种类型细菌的空间分布种群常常呈现出复杂的空间模式,这些模式被认为是细胞对营养物质或其他引诱剂梯度作出反应的结果。在过去十年中,人们对大肠杆菌和其他细菌中的信号转导、代谢及运动有了很多了解,但将个体层面的行为转化为种群层面的动态变化仍是一个具有挑战性的问题。然而,这是必要的一步,因为使用严格基于细胞的模型来理解生长种群中的模式在计算上是不切实际的,因为在某些实验中细胞总数可能达到10¹² - 10¹⁴ 。过去,诸如帕特拉克 - 凯勒 - 西格尔方程等唯象方程已被用于对参与此类模式形成的细胞运动进行建模,但微观行为如何能被一个宏观方程正确描述的问题依然存在。对于采用“游动与翻滚”运动策略的细菌物种已取得了显著进展,即基于信号转导和转向行为的简化方案推导出了宏观方程[14, 15]。在此,我们在多个方向上扩展了先前的工作:(i)我们考虑了随时间变化的信号,这将方程的适用性扩展到了自然环境;(ii)我们使用了一个更通用的转向速率函数,它能更好地描述生物学行为;(iii)我们纳入了细胞在靠近表面游动时产生的流体动力的影响。我们还开发了一种新方法来求解从输运方程导出的矩方程,该方法不涉及封闭假设。数值例子表明,最低阶宏观方程的解与在各种信号时间协议下细胞运动的蒙特卡罗模拟得到的解非常吻合。我们还应用该方法推导出了由多个趋化信号控制的趋化运动方程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b4e/2752049/16ea25312181/nihms-96112-f0001.jpg

相似文献

4
Taxis equations for amoeboid cells.变形虫状细胞的趋性方程。
J Math Biol. 2007 Jun;54(6):847-85. doi: 10.1007/s00285-007-0070-1. Epub 2007 Feb 2.

引用本文的文献

1
Coarse-graining bacterial diffusion in disordered media to surface states.将无序介质中细菌的扩散粗粒化为表面态。
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2407313122. doi: 10.1073/pnas.2407313122. Epub 2025 Mar 21.
3
The impact of rheotaxis and flow on the aggregation of organisms.流切性和流动对生物聚集的影响。
J R Soc Interface. 2021 Oct;18(183):20210582. doi: 10.1098/rsif.2021.0582. Epub 2021 Oct 20.
7
Spatially extended hybrid methods: a review.空间扩展混合方法:综述。
J R Soc Interface. 2018 Feb;15(139). doi: 10.1098/rsif.2017.0931.
9
Barrier Crossing in Escherichia coli Chemotaxis.大肠杆菌趋化作用中的屏障穿越
Phys Rev Lett. 2017 Mar 3;118(9):098101. doi: 10.1103/PhysRevLett.118.098101. Epub 2017 Feb 28.

本文引用的文献

1
Radial and spiral stream formation in Proteus mirabilis colonies.变形杆菌属集落中的放射状和螺旋状流形成。
PLoS Comput Biol. 2011 Dec;7(12):e1002332. doi: 10.1371/journal.pcbi.1002332. Epub 2011 Dec 29.
3
Taxis equations for amoeboid cells.变形虫状细胞的趋性方程。
J Math Biol. 2007 Jun;54(6):847-85. doi: 10.1007/s00285-007-0070-1. Epub 2007 Feb 2.
5
Swimming in circles: motion of bacteria near solid boundaries.在圆周中游动:细菌在固体边界附近的运动
Biophys J. 2006 Jan 15;90(2):400-12. doi: 10.1529/biophysj.105.069401. Epub 2005 Oct 20.
6
Escherichia coli swim on the right-hand side.大肠杆菌在右侧游动。
Nature. 2005 Jun 30;435(7046):1271-4. doi: 10.1038/nature03660.
7
Making sense of it all: bacterial chemotaxis.理解这一切:细菌趋化性。
Nat Rev Mol Cell Biol. 2004 Dec;5(12):1024-37. doi: 10.1038/nrm1524.
8
Chemotaxis-guided movements in bacteria.细菌中的趋化性引导运动。
Crit Rev Oral Biol Med. 2004 Jul 1;15(4):207-20. doi: 10.1177/154411130401500404.
9
Chemotaxis: the role of internal delays.趋化性:内部延迟的作用。
Eur Biophys J. 2004 Dec;33(8):691-3. doi: 10.1007/s00249-004-0426-z. Epub 2004 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验