Li Zhaojun, Cai Qiuxian, Zhang Xuanqi, Si Guangwei, Ouyang Qi, Luo Chunxiong, Tu Yuhai
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Center for Quantitative Biology, Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China.
Phys Rev Lett. 2017 Mar 3;118(9):098101. doi: 10.1103/PhysRevLett.118.098101. Epub 2017 Feb 28.
We study cell navigation in spatiotemporally complex environments by developing a microfluidic racetrack device that creates a traveling wave with multiple peaks and a tunable wave speed. We find that while the population-averaged chemotaxis drift speed increases with wave speed for low wave speed, it decreases sharply for high wave speed. This reversed dependence of population-averaged chemotaxis drift speed on wave speed is caused by a "barrier-crossing" phenomenon, where a cell hops backwards from one peak attractant location to the peak behind by crossing an unfavorable (barrier) region with low attractant concentrations. By using a coarse-grained model of chemotaxis, we map bacterial motility in an attractant field to the random motion of an overdamped particle in an effective potential. The observed barrier-crossing phenomenon of living cells and its dependence on the spatiotemporal profile of attractant concentration are explained quantitatively by Kramers reaction rate theory.
我们通过开发一种微流控赛道装置来研究细胞在时空复杂环境中的导航,该装置可产生具有多个峰值和可调波速的行波。我们发现,虽然在低波速下群体平均趋化漂移速度随波速增加,但在高波速下它会急剧下降。群体平均趋化漂移速度对波速的这种反向依赖性是由“跨越障碍”现象引起的,即细胞通过穿越吸引剂浓度低的不利(障碍)区域,从一个峰值吸引剂位置向后跳到后面的峰值。通过使用趋化的粗粒度模型,我们将细菌在吸引剂场中的运动映射到过阻尼粒子在有效势中的随机运动。活细胞观察到的跨越障碍现象及其对吸引剂浓度时空分布的依赖性由克莱默斯反应速率理论进行了定量解释。