Xue Chuan
Department of Mathematics, Ohio State University, Columbus, OH, 43210, USA,
J Math Biol. 2015 Jan;70(1-2):1-44. doi: 10.1007/s00285-013-0748-5. Epub 2013 Dec 24.
Chemotaxis of single cells has been extensively studied and a great deal on intracellular signaling and cell movement is known. However, systematic methods to embed such information into continuum PDE models for cell population dynamics are still in their infancy. In this paper, we consider chemotaxis of run-and-tumble bacteria and derive continuum models that take into account of the detailed biochemistry of intracellular signaling. We analytically show that the macroscopic bacterial density can be approximated by the Patlak-Keller-Segel equation in response to signals that change slowly in space and time. We derive, for the first time, general formulas that represent the chemotactic sensitivity in terms of detailed descriptions of single-cell signaling dynamics in arbitrary space dimensions. These general formulas are useful in explaining relations of single cell behavior and population dynamics. As an example, we apply the theory to chemotaxis of bacterium Escherichia coli and show how the structure and kinetics of the intracellular signaling network determine the sensing properties of E. coli populations. Numerical comparison of the derived PDEs and the underlying cell-based models show quantitative agreements for signals that change slowly, and qualitative agreements for signals that change extremely fast. The general theory we develop here is readily applicable to chemotaxis of other run-and-tumble bacteria, or collective behavior of other individuals that move using a similar strategy.
单细胞的趋化性已得到广泛研究,我们对细胞内信号传导和细胞运动也有了很多了解。然而,将此类信息嵌入用于细胞群体动力学的连续偏微分方程(PDE)模型的系统方法仍处于起步阶段。在本文中,我们考虑了随机游走细菌的趋化性,并推导出了考虑细胞内信号传导详细生物化学过程的连续模型。我们通过分析表明,在时空变化缓慢的信号作用下,宏观细菌密度可以用帕特拉克 - 凯勒 - 西格尔方程来近似。我们首次推导出了在任意空间维度上,根据单细胞信号动力学的详细描述来表示趋化敏感性的通用公式。这些通用公式有助于解释单细胞行为与群体动力学之间的关系。例如,我们将该理论应用于大肠杆菌的趋化性研究,并展示了细胞内信号网络的结构和动力学如何决定大肠杆菌群体的感知特性。对推导得到的偏微分方程与底层基于细胞的模型进行数值比较表明,对于变化缓慢的信号存在定量一致性,而对于变化极快的信号存在定性一致性。我们在此开发的通用理论很容易应用于其他随机游走细菌的趋化性研究,或应用于使用类似策略移动的其他个体的集体行为研究。