DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Aachen, Germany.
Biomacromolecules. 2009 Oct 12;10(10):2795-801. doi: 10.1021/bm900631s.
Important in developing new biomaterials is the prevention of unspecific protein adsorption and cell interactions that in vivo can lead to a foreign body reaction. On the other hand, the material should support the growth of a specific cell type in a defined way. We investigate the possibility of manipulating cellular behavior on an intrinsically nonadhesive material by topographic patterning without additional surface chemistry modifications. The biomaterial applied is a hydrogel cross-linked from star-shaped poly(ethylene glycol) macromonomers (starPEG). Cell biological studies with a mouse fibroblast cell line (L929) showed that, while substrates with a smooth surface are nonadhesive, as expected, imprinted topography enabled cell adhesion and spreading. The fibroblasts aligned to micrometer groove patterns and were, depending on the respective dimensions, able to span or enter the grooves. Especially substrates with topography dimensions in the cell size range or smaller (<10 microm) lead to an establishment of stable cell-surface contacts (vinculin and actin accumulation). On micrometer post patterns the cells spread on top of the pillars and wrapped around the structures. The strong influence of the topography shows that nonadhesive materials do not necessarily have to be specifically biofunctionalized to enable cell adhesion. Possible explanations for the peculiar cell behavior are discussed in terms of (initial) protein adsorption and geometry-dependent cytoskeletal arrangements.
在开发新的生物材料时,重要的是要防止体内可能导致异物反应的非特异性蛋白质吸附和细胞相互作用。另一方面,该材料应支持特定细胞类型以特定方式生长。我们通过形貌图案化而无需额外的表面化学修饰来研究在固有非粘性材料上操纵细胞行为的可能性。所应用的生物材料是由星形聚乙二醇大分子单体(星形 PEG)交联而成的水凝胶。用小鼠成纤维细胞系(L929)进行的细胞生物学研究表明,虽然具有光滑表面的底物是非粘性的,但如预期的那样,压印形貌能够使细胞黏附和铺展。成纤维细胞排列在微米级槽图案上,并且根据各自的尺寸,能够跨越或进入槽中。特别是具有在细胞尺寸范围内或更小的形貌尺寸(<10 微米)的底物导致稳定的细胞-表面接触(粘着斑蛋白和肌动蛋白积累)的建立。在微米级柱图案上,细胞在柱子顶部展开并包裹在结构周围。形貌的强烈影响表明,非粘性材料不一定需要专门的生物功能化以实现细胞黏附。根据初始蛋白质吸附和几何依赖性细胞骨架排列,讨论了这种特殊细胞行为的可能解释。