Suppr超能文献

质子化外腔组氨酸残基对 K(Ca)2.2 和 K(Ca)2.3 通道电流的抑制作用。

Inhibition of K(Ca)2.2 and K(Ca)2.3 channel currents by protonation of outer pore histidine residues.

机构信息

Department of Physiology and Pharmacology, University of Bristol, England, UK.

出版信息

J Gen Physiol. 2009 Oct;134(4):295-308. doi: 10.1085/jgp.200910252.

Abstract

Ion channels are often modulated by changes in extracellular pH, with most examples resulting from shifts in the ionization state of histidine residue(s) in the channel pore. The application of acidic extracellular solution inhibited expressed K(Ca)2.2 (SK2) and K(Ca)2.3 (SK3) channel currents, with K(Ca)2.3 (pIC(50) of approximately 6.8) being approximately fourfold more sensitive than K(Ca)2.2 (pIC(50) of approximately 6.2). Inhibition was found to be voltage dependent, resulting from a shift in the affinity for the rectifying intracellular divalent cation(s) at the inner mouth of the selectivity filter. The inhibition by extracellular protons resulted from a reduction in the single-channel conductance, without significant changes in open-state kinetics or open probability. K(Ca)2.2 and K(Ca)2.3 subunits both possess a histidine residue in their outer pore region between the transmembrane S5 segment and the pore helix, with K(Ca)2.3 also exhibiting an additional histidine residue between the selectivity filter and S6. Mutagenesis revealed that the outer pore histidine common to both channels was critical for inhibition. The greater sensitivity of K(Ca)2.3 currents to protons arose from the additional histidine residue in the pore, which was more proximal to the conduction pathway and in the electrostatic vicinity of the ion conduction pathway. The decrease of channel conductance by extracellular protons was mimicked by mutation of the outer pore histidine in K(Ca)2.2 to an asparagine residue. These data suggest that local interactions involving the outer turret histidine residues are crucial to enable high conductance openings, with protonation inhibiting current by changing pore shape.

摘要

离子通道通常会受到细胞外 pH 值变化的调节,大多数例子都是由于通道孔中组氨酸残基的离解状态发生变化所致。应用酸性细胞外溶液可抑制表达的 K(Ca)2.2(SK2)和 K(Ca)2.3(SK3)通道电流,其中 K(Ca)2.3(pIC(50)约为 6.8)的敏感性约为 K(Ca)2.2(pIC(50)约为 6.2)的四倍。发现这种抑制作用具有电压依赖性,是由于在选择性过滤器的内口对整流细胞内二价阳离子的亲和力发生了变化。细胞外质子的抑制作用是由于单通道电导降低所致,而开放状态动力学或开放概率没有明显变化。K(Ca)2.2 和 K(Ca)2.3 亚基在其跨膜 S5 片段和孔螺旋之间的外孔区域都具有一个组氨酸残基,而 K(Ca)2.3 还在选择性过滤器和 S6 之间具有另外一个组氨酸残基。突变表明,两个通道共有的外孔组氨酸对于抑制作用至关重要。K(Ca)2.3 电流对质子的敏感性更高,是因为孔中的额外组氨酸残基更接近传导途径,并且处于离子传导途径的静电临近处。通过将 K(Ca)2.2 中的外孔组氨酸突变为天冬酰胺残基,可模拟细胞外质子对通道电导的降低。这些数据表明,涉及外孔突环组氨酸残基的局部相互作用对于实现高电导开放至关重要,质子化通过改变孔形状来抑制电流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/367d/2757770/6977a602025d/JGP_200910252_LW_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验