Suppr超能文献

营养和选择性抑制剂添加物对垃圾填埋覆盖土壤中甲烷氧化、氧化亚氮生成以及关键基因存在和表达的影响:甲烷营养菌、硝化菌和反硝化菌作用的特征描述。

Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers.

机构信息

Department of Civil and Environmental Engineering, The University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109-2125, USA.

出版信息

Appl Microbiol Biotechnol. 2009 Nov;85(2):389-403. doi: 10.1007/s00253-009-2238-7. Epub 2009 Sep 29.

Abstract

Methane and nitrous oxide are both potent greenhouse gasses, with global warming potentials approximately 25 and 298 times that of carbon dioxide. A matrix of soil microcosms was constructed with landfill cover soils collected from the King Highway Landfill in Kalamazoo, Michigan and exposed to geochemical parameters known to affect methane consumption by methanotrophs while also examining their impact on biogenic nitrous oxide production. It was found that relatively dry soils (5% moisture content) along with 15 mg NH (4) (+) (kg soil)(-1) and 0.1 mg phenylacetylene(kg soil)(-1) provided the greatest stimulation of methane oxidation while minimizing nitrous oxide production. Microarray analyses of pmoA showed that the methanotrophic community structure was dominated by Type II organisms, but Type I genera were more evident with the addition of ammonia. When phenylacetylene was added in conjunction with ammonia, the methanotrophic community structure was more similar to that observed in the presence of no amendments. PCR analyses showed the presence of amoA from both ammonia-oxidizing bacteria and archaea, and that the presence of key genes associated with these cells was reduced with the addition of phenylacetylene. Messenger RNA analyses found transcripts of pmoA, but not of mmoX, nirK, norB, or amoA from either ammonia-oxidizing bacteria or archaea. Pure culture analyses showed that methanotrophs could produce significant amounts of nitrous oxide, particularly when expressing the particulate methane monooxygenase (pMMO). Collectively, these data suggest that methanotrophs expressing pMMO played a role in nitrous oxide production in these microcosms.

摘要

甲烷和氧化亚氮都是强效温室气体,全球变暖潜能值分别约为二氧化碳的 25 倍和 298 倍。构建了一个土壤微宇宙矩阵,使用从密歇根州卡拉马祖的国王高速公路垃圾填埋场收集的垃圾填埋覆盖土壤,并暴露于已知影响甲烷营养菌消耗甲烷的地球化学参数下,同时研究它们对生物源氧化亚氮产生的影响。结果发现,相对干燥的土壤(5%的水分含量),加上 15mgNH4+(kg 土壤)(-1)和 0.1mg 苯乙炔(kg 土壤)(-1),可最大程度地刺激甲烷氧化,同时最小化氧化亚氮的产生。pmoA 的微阵列分析表明,甲烷营养菌群落结构主要由 II 型生物主导,但添加氨后,I 型属更为明显。当添加苯乙炔与氨一起时,甲烷营养菌群落结构与未添加任何改良剂时更为相似。PCR 分析显示存在氨氧化细菌和古菌的 amoA,并且添加苯乙炔会降低与这些细胞相关的关键基因的存在。信使 RNA 分析发现了 pmoA 的转录本,但氨氧化细菌和古菌的 mmoX、nirK、norB 或 amoA 的转录本不存在。纯培养分析表明,甲烷营养菌可以产生大量的氧化亚氮,特别是当表达颗粒态甲烷单加氧酶(pMMO)时。总的来说,这些数据表明,表达 pMMO 的甲烷营养菌在这些微宇宙中氧化亚氮的产生中发挥了作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验