Lu Haiping, Plataniotis Konstantinos N Kostas, Venetsanopoulos Anastasios N
Institute for Infocomm Research, Agency for Science, Technologyand Research, Singapore 138632, Singapore.
IEEE Trans Neural Netw. 2009 Nov;20(11):1820-36. doi: 10.1109/TNN.2009.2031144. Epub 2009 Sep 29.
This paper proposes an uncorrelated multilinear principal component analysis (UMPCA) algorithm for unsupervised subspace learning of tensorial data. It should be viewed as a multilinear extension of the classical principal component analysis (PCA) framework. Through successive variance maximization, UMPCA seeks a tensor-to-vector projection (TVP) that captures most of the variation in the original tensorial input while producing uncorrelated features. The solution consists of sequential iterative steps based on the alternating projection method. In addition to deriving the UMPCA framework, this work offers a way to systematically determine the maximum number of uncorrelated multilinear features that can be extracted by the method. UMPCA is compared against the baseline PCA solution and its five state-of-the-art multilinear extensions, namely two-dimensional PCA (2DPCA), concurrent subspaces analysis (CSA), tensor rank-one decomposition (TROD), generalized PCA (GPCA), and multilinear PCA (MPCA), on the tasks of unsupervised face and gait recognition. Experimental results included in this paper suggest that UMPCA is particularly effective in determining the low-dimensional projection space needed in such recognition tasks.
本文提出了一种用于张量数据无监督子空间学习的不相关多线性主成分分析(UMPCA)算法。它应被视为经典主成分分析(PCA)框架的多线性扩展。通过连续的方差最大化,UMPCA寻求一种张量到向量投影(TVP),该投影在产生不相关特征的同时捕获原始张量输入中的大部分变化。该解决方案由基于交替投影法的顺序迭代步骤组成。除了推导UMPCA框架外,这项工作还提供了一种系统地确定该方法可以提取的不相关多线性特征的最大数量的方法。在无监督的面部和步态识别任务中,将UMPCA与基线PCA解决方案及其五种最新的多线性扩展方法进行了比较,这五种方法分别是二维PCA(2DPCA)、并发子空间分析(CSA)、张量秩一分解(TROD)、广义PCA(GPCA)和多线性PCA(MPCA)。本文中的实验结果表明,UMPCA在确定此类识别任务所需的低维投影空间方面特别有效。