Hallatschek Oskar, Korolev K S
Max Planck Research Group for Biological Physics and Evolutionary Dynamics, Max Planck Institute for Dynamics & Self-Organization (MPIDS), Göttingen, Germany.
Phys Rev Lett. 2009 Sep 4;103(10):108103. doi: 10.1103/PhysRevLett.103.108103. Epub 2009 Sep 2.
We investigate the effects of a strong number fluctuations on traveling waves in the Fisher-Kolmogorov reaction-diffusion system. Our findings are in stark contrast to the commonly used deterministic and weak-noise approximations. We compute the wave velocity in one and two spatial dimensions, for which we find a linear and a square-root dependence of the speed on the particle density. Instead of smooth sigmoidal wave profiles, we observe fronts composed of a few rugged kinks that diffuse, annihilate, and rarely branch; this dynamics leads to power-law tails in the distribution of the front sizes.
我们研究了强数量涨落在Fisher-Kolmogorov反应扩散系统中对行波的影响。我们的发现与常用的确定性和弱噪声近似形成鲜明对比。我们计算了一维和二维空间中的波速,发现速度对粒子密度呈线性和平方根依赖关系。我们观察到的前沿不是光滑的S形波剖面,而是由一些崎岖的扭结组成,这些扭结会扩散、湮灭,很少分支;这种动力学导致前沿尺寸分布出现幂律尾部。