Suppr超能文献

生长不稳定性塑造了微生物菌落的形态和遗传多样性。

Growth instabilities shape morphology and genetic diversity of microbial colonies.

机构信息

Department of Physics, Graduate Program in Bioinformatics, and Biological Design Center, Boston University, Boston, MA 02215, United States of America.

Graduate Program in Bioinformatics, and Biological Design Center, Boston University, Boston, MA 02215, United States of America.

出版信息

Phys Biol. 2022 Aug 19;19(5). doi: 10.1088/1478-3975/ac8514.

Abstract

Cellular populations assume an incredible variety of shapes ranging from circular molds to irregular tumors. While we understand many of the mechanisms responsible for these spatial patterns, little is known about how the shape of a population influences its ecology and evolution. Here, we investigate this relationship in the context of microbial colonies grown on hard agar plates. This a well-studied system that exhibits a transition from smooth circular disks to more irregular and rugged shapes as either the nutrient concentration or cellular motility is decreased. Starting from a mechanistic model of colony growth, we identify two dimensionless quantities that determine how morphology and genetic diversity of the population depend on the model parameters. Our simulations further reveal that population dynamics cannot be accurately described by the commonly-used surface growth models. Instead, one has to explicitly account for the emergent growth instabilities and demographic fluctuations. Overall, our work links together environmental conditions, colony morphology, and evolution. This link is essential for a rational design of concrete, biophysical perturbations to steer evolution in the desired direction.

摘要

细胞群体呈现出令人难以置信的多种形状,从圆形模具到不规则的肿瘤。虽然我们了解许多导致这些空间模式的机制,但对于群体的形状如何影响其生态和进化知之甚少。在这里,我们在硬琼脂平板上生长的微生物菌落的背景下研究这种关系。这是一个研究充分的系统,表现出从光滑的圆形盘到更不规则和崎岖的形状的转变,这取决于营养浓度或细胞运动性的降低。从菌落生长的机械模型出发,我们确定了两个无量纲量,它们决定了群体的形态和遗传多样性如何取决于模型参数。我们的模拟进一步表明,种群动态不能通过常用的表面生长模型准确描述。相反,必须明确考虑出现的生长不稳定性和人口波动。总的来说,我们的工作将环境条件、菌落形态和进化联系在一起。这种联系对于合理设计具体的、生物物理干扰以引导进化朝着期望的方向发展至关重要。

相似文献

7
Morphological instability and roughening of growing 3D bacterial colonies.三维细菌菌落生长的形态不稳定性和粗糙化。
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2208019119. doi: 10.1073/pnas.2208019119. Epub 2022 Oct 18.
9
Individual-Based Modeling of Spatial Dynamics of Chemotactic Microbial Populations.基于个体的趋化微生物种群空间动态模型。
ACS Synth Biol. 2022 Nov 18;11(11):3714-3723. doi: 10.1021/acssynbio.2c00322. Epub 2022 Nov 6.

引用本文的文献

1
Biophysical metabolic modeling of complex bacterial colony morphology.复杂细菌菌落形态的生物物理代谢建模
Cell Syst. 2025 Aug 20;16(8):101352. doi: 10.1016/j.cels.2025.101352. Epub 2025 Aug 8.
2
The biophysical basis of bacterial colony growth.细菌菌落生长的生物物理基础。
Nat Phys. 2024 Sep;20(9):1509-1517. doi: 10.1038/s41567-024-02572-3. Epub 2024 Jul 9.
4
Integrative analysis of yeast colony growth.酵母集落生长的综合分析。
Commun Biol. 2024 Apr 29;7(1):511. doi: 10.1038/s42003-024-06218-1.
6
Proliferating active matter.增殖活性物质。
Nat Rev Phys. 2023 May 31:1-13. doi: 10.1038/s42254-023-00593-0.
7
Morphological instability and roughening of growing 3D bacterial colonies.三维细菌菌落生长的形态不稳定性和粗糙化。
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2208019119. doi: 10.1073/pnas.2208019119. Epub 2022 Oct 18.

本文引用的文献

3
Mutability of demographic noise in microbial range expansions.微生物分布范围扩展中的种群噪音的可变性。
ISME J. 2021 Sep;15(9):2643-2654. doi: 10.1038/s41396-021-00951-9. Epub 2021 Mar 21.
5
Evolution in range expansions with competition at rough boundaries.在粗糙边界的竞争中,范围扩张的进化。
J Theor Biol. 2019 Oct 7;478:153-160. doi: 10.1016/j.jtbi.2019.06.018. Epub 2019 Jun 18.
9
Fluctuations uncover a distinct class of traveling waves.涨落揭示了一类独特的行波。
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3645-E3654. doi: 10.1073/pnas.1715737115. Epub 2018 Apr 2.
10
Genetic drift and selection in many-allele range expansions.多等位基因范围扩张中的遗传漂变与选择
PLoS Comput Biol. 2017 Dec 1;13(12):e1005866. doi: 10.1371/journal.pcbi.1005866. eCollection 2017 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验