J Phys Chem B. 2009 Nov 5;113(44):14545-8. doi: 10.1021/jp907808t.
The driving force dependence of the rate constants for nonadiabatic electron transfer (ET), proton transfer (PT), and proton-coupled electron transfer (PCET) reactions is examined. Inverted region behavior, where the rate constant decreases as the reaction becomes more exoergic (i.e., as DeltaG(0) becomes more negative), has been observed experimentally for ET and PT. This behavior was predicted theoretically for ET but is not well understood for PT and PCET. The objective of this Letter is to predict the experimental conditions that could lead to observation of inverted region behavior for PT and PCET. The driving force dependence of the rate constant is qualitatively different for PT and PCET than for ET because of the high proton vibrational frequency and substantial shift between the reactant and product proton vibrational wave functions. As a result, inverted region behavior is predicted to be experimentally inaccessible for PT and PCET if only the driving force is varied. This behavior may be observed for PT over a limited range of rates and driving forces if the solvent reorganization energy is low enough to cause observable oscillations. Moreover, this behavior may be observed for PT or PCET if the proton donor-acceptor distance increases as DeltaG(0) becomes more negative. Thus, a plausible explanation for experimentally observed inverted region behavior for PT or PCET is that varying the driving force also impacts other properties of the system, such as the proton donor-acceptor distance.
考察了非绝热电子转移(ET)、质子转移(PT)和质子耦合电子转移(PCET)反应速率常数对驱动力的依赖性。实验上已经观察到 ET 和 PT 反应中反绝热区行为,即速率常数随着反应变得更加放能(即 DeltaG(0)变得更负)而降低。这种行为在 ET 理论上进行了预测,但对于 PT 和 PCET 并不完全理解。本文的目的是预测可能导致观察到 PT 和 PCET 反绝热区行为的实验条件。由于质子振动频率高且反应物和产物质子振动波函数之间存在较大位移,因此,对于 PT 和 PCET,速率常数对驱动力的依赖性与 ET 有很大不同。因此,如果仅改变驱动力,预计在实验上无法观察到 PT 和 PCET 的反绝热区行为。如果溶剂重组能足够低,导致可观察到的振荡,则可以在有限的速率和驱动力范围内观察到 PT 的这种行为。此外,如果质子给体-受体距离随着 DeltaG(0)变得更负而增加,则可以观察到 PT 或 PCET 的这种行为。因此,对于实验上观察到的 PT 或 PCET 的反绝热区行为的合理解释是,改变驱动力也会影响系统的其他性质,例如质子给体-受体距离。