Suppr超能文献

OGO:一种用于整合同源知识的本体论方法。

OGO: an ontological approach for integrating knowledge about orthology.

机构信息

Departamento de Informática y Sistemas, Universidad de Murcia, Murcia, 30100, Spain.

出版信息

BMC Bioinformatics. 2009 Oct 1;10 Suppl 10(Suppl 10):S13. doi: 10.1186/1471-2105-10-S10-S13.

Abstract

BACKGROUND

There exist several information resources about orthology of genes and proteins, and there are also systems for querying those resources in an integrated way. However, caveats with current approaches include lack of integration, since results are shown sequentially by resource, meaning that there is redundant information and the users are required to combine the results obtained manually.

RESULTS

In this paper we have applied the Ontological Gene Orthology approach, which makes use of a domain ontology to integrate the information output from selected orthology resources. The integrated information is stored in a knowledge base, which can be queried through semantic languages. A friendly user interface has been developed to facilitate the search; consequently, users do not need to have knowledge on ontologies or ontological languages to obtain the relevant information.

CONCLUSION

The development and application of our approach allows users to retrieve integrated results when querying orthology information, providing a gene product-oriented output instead of a traditional information resource-oriented one. Besides this benefit for users, it also allows a better exploitation and management of orthology information and knowledge.

摘要

背景

目前存在着几种关于基因和蛋白质直系同源的信息资源,也有一些系统可以将这些资源集成地进行查询。然而,当前方法存在一些缺陷,例如缺乏集成性,因为结果是按资源顺序显示的,这意味着存在冗余信息,并且要求用户手动组合获得的结果。

结果

在本文中,我们应用了基于本体的基因直系同源方法,该方法利用领域本体来集成从选定的直系同源资源中输出的信息。集成的信息存储在知识库中,可以通过语义语言进行查询。我们开发了一个友好的用户界面来方便搜索;因此,用户不需要具有本体或本体语言方面的知识即可获得相关信息。

结论

我们方法的开发和应用允许用户在查询直系同源信息时检索集成的结果,提供面向基因产物的输出,而不是传统的面向信息资源的输出。除了为用户带来的好处之外,这还允许更好地利用和管理直系同源信息和知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e47/2755821/d16e17d3fb71/12859_2009_Article_3381_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验