Ooi Chia Huey, Ivanova Tatiana, Wu Jeanie, Lee Minghui, Tan Iain Beehuat, Tao Jiong, Ward Lindsay, Koo Jun Hao, Gopalakrishnan Veena, Zhu Yansong, Cheng Lai Ling, Lee Julian, Rha Sun Young, Chung Hyun Cheol, Ganesan Kumaresan, So Jimmy, Soo Khee Chee, Lim Dennis, Chan Weng Hoong, Wong Wai Keong, Bowtell David, Yeoh Khay Guan, Grabsch Heike, Boussioutas Alex, Tan Patrick
Duke-NUS Graduate Medical School, Singapore.
PLoS Genet. 2009 Oct;5(10):e1000676. doi: 10.1371/journal.pgen.1000676. Epub 2009 Oct 2.
Many solid cancers are known to exhibit a high degree of heterogeneity in their deregulation of different oncogenic pathways. We sought to identify major oncogenic pathways in gastric cancer (GC) with significant relationships to patient survival. Using gene expression signatures, we devised an in silico strategy to map patterns of oncogenic pathway activation in 301 primary gastric cancers, the second highest cause of global cancer mortality. We identified three oncogenic pathways (proliferation/stem cell, NF-kappaB, and Wnt/beta-catenin) deregulated in the majority (>70%) of gastric cancers. We functionally validated these pathway predictions in a panel of gastric cancer cell lines. Patient stratification by oncogenic pathway combinations showed reproducible and significant survival differences in multiple cohorts, suggesting that pathway interactions may play an important role in influencing disease behavior. Individual GCs can be successfully taxonomized by oncogenic pathway activity into biologically and clinically relevant subgroups. Predicting pathway activity by expression signatures thus permits the study of multiple cancer-related pathways interacting simultaneously in primary cancers, at a scale not currently achievable by other platforms.
已知许多实体癌在不同致癌途径的失调方面表现出高度异质性。我们试图确定在胃癌(GC)中与患者生存有显著关联的主要致癌途径。利用基因表达特征,我们设计了一种计算机模拟策略,以绘制301例原发性胃癌中致癌途径激活模式,胃癌是全球癌症死亡的第二大原因。我们确定了在大多数(>70%)胃癌中失调的三种致癌途径(增殖/干细胞、NF-κB和Wnt/β-连环蛋白)。我们在一组胃癌细胞系中对这些途径预测进行了功能验证。通过致癌途径组合对患者进行分层显示,多个队列中存在可重复且显著的生存差异,这表明途径相互作用可能在影响疾病行为方面发挥重要作用。单个胃癌可以通过致癌途径活性成功分类为生物学和临床相关的亚组。因此,通过表达特征预测途径活性允许在原发性癌症中同时研究多个与癌症相关的途径相互作用,这是目前其他平台无法实现的规模。