Suppr超能文献

神经突分支回缩是由阈值依赖性机械冲击引起的。

Neurite branch retraction is caused by a threshold-dependent mechanical impact.

作者信息

Franze Kristian, Gerdelmann Jens, Weick Michael, Betz Timo, Pawlizak Steve, Lakadamyali Melike, Bayer Johannes, Rillich Katja, Gögler Michael, Lu Yun-Bi, Reichenbach Andreas, Janmey Paul, Käs Josef

机构信息

Department of Physics, Soft Matter Physics Group, Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany.

出版信息

Biophys J. 2009 Oct 7;97(7):1883-90. doi: 10.1016/j.bpj.2009.07.033.

Abstract

Recent results indicate that, in addition to chemical cues, mechanical stimuli may also impact neuronal growth. For instance, unlike most other cell types, neurons prefer soft substrates. However, the mechanisms responsible for the neuronal affinity for soft substrates have not yet been identified. In this study, we show that, in vitro, neurons continuously probe their mechanical environment. Growth cones visibly deform substrates with a compliance commensurate with their own. To understand the sensing of stiff substrates by growth cones, we investigated their precise temporal response to well-defined mechanical stress. When the applied stress exceeded a threshold of 274 +/- 41 pN/microm(2), neurons retracted and re-extended their processes, thereby enabling exploration of alternative directions. A calcium influx through stretch-activated ion channels and the detachment of adhesion sites were prerequisites for this retraction. Our data illustrate how growing neurons may detect and avoid stiff substrates--as a mechanism involved in axonal branch pruning--and provide what we believe is novel support of the idea that mechanics may act as guidance cue for neuronal growth.

摘要

最近的研究结果表明,除了化学信号外,机械刺激也可能影响神经元的生长。例如,与大多数其他细胞类型不同,神经元更喜欢柔软的底物。然而,神经元对柔软底物的亲和性所涉及的机制尚未确定。在本研究中,我们表明,在体外,神经元会持续探测其机械环境。生长锥能明显地使与其自身顺应性相当的底物变形。为了了解生长锥对坚硬底物的感知,我们研究了它们对明确界定的机械应力的精确瞬时反应。当施加的应力超过274±41皮牛/微米²的阈值时,神经元会缩回并重新伸展其突起,从而能够探索其他方向。通过拉伸激活离子通道的钙内流和黏附位点的脱离是这种缩回的先决条件。我们的数据说明了正在生长的神经元如何检测并避开坚硬的底物——作为轴突分支修剪所涉及的一种机制——并为力学可能作为神经元生长的引导信号这一观点提供了我们认为是新颖的支持。

相似文献

2
Piconewton Mechanical Forces Promote Neurite Growth.皮牛顿机械力促进神经突生长。
Biophys J. 2018 Nov 20;115(10):2026-2033. doi: 10.1016/j.bpj.2018.10.009. Epub 2018 Oct 16.
5
Stretch-sensitive ion channels of neuronal growth cones.
Arch Ital Biol. 1997 Sep;135(4):319-29.
7
Response of mechanically-created neurites to extension.机械诱导的神经突对伸展的反应。
J Mech Behav Biomed Mater. 2019 Oct;98:121-130. doi: 10.1016/j.jmbbm.2019.06.015. Epub 2019 Jun 19.

引用本文的文献

2
Can repetitive mechanical motion cause structural damage to axons?重复性机械运动是否会对轴突造成结构损伤?
Front Mol Neurosci. 2024 Jun 7;17:1371738. doi: 10.3389/fnmol.2024.1371738. eCollection 2024.
10
Gelatin-Based Hydrogel for Three-Dimensional Neuron Culture Application.用于三维神经元培养应用的明胶基水凝胶
ACS Omega. 2023 Nov 17;8(48):45288-45300. doi: 10.1021/acsomega.3c03769. eCollection 2023 Dec 5.

本文引用的文献

3
Calcium signaling in neuronal motility.神经元运动中的钙信号传导。
Annu Rev Cell Dev Biol. 2007;23:375-404. doi: 10.1146/annurev.cellbio.23.090506.123221.
4
A quantitative method for analysis of in vitro neurite outgrowth.一种用于分析体外神经突生长的定量方法。
J Neurosci Methods. 2007 Aug 30;164(2):350-62. doi: 10.1016/j.jneumeth.2007.04.021. Epub 2007 May 6.
5
Viscoelastic properties of individual glial cells and neurons in the CNS.中枢神经系统中单个神经胶质细胞和神经元的粘弹性特性。
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17759-64. doi: 10.1073/pnas.0606150103. Epub 2006 Nov 8.
8
Cytoskeletal coordination during neuronal migration.神经元迁移过程中的细胞骨架协调
Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13652-7. doi: 10.1073/pnas.0506008102. Epub 2005 Sep 7.
9
Axon retraction and degeneration in development and disease.发育和疾病中的轴突回缩与退化
Annu Rev Neurosci. 2005;28:127-56. doi: 10.1146/annurev.neuro.28.061604.135632.
10
Tracking retrograde flow in keratocytes: news from the front.追踪角膜细胞中的逆行流动:前沿消息
Mol Biol Cell. 2005 Mar;16(3):1223-31. doi: 10.1091/mbc.e04-07-0615. Epub 2005 Jan 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验