Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801.
Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2023 Dec 26;120(52):e2311995120. doi: 10.1073/pnas.2311995120. Epub 2023 Dec 19.
Neurons in the brain communicate with each other at their synapses. It has long been understood that this communication occurs through biochemical processes. Here, we reveal that mechanical tension in neurons is essential for communication. Using in vitro rat hippocampal neurons, we find that 1) neurons become tout/tensed after forming synapses resulting in a contractile neural network, and 2) without this contractility, neurons fail to fire. To measure time evolution of network contractility in 3D (not 2D) extracellular matrix, we developed an ultrasensitive force sensor with 1 nN resolution. We employed Multi-Electrode Array and iGluSnFR, a glutamate sensor, to quantify neuronal firing at the network and at the single synapse scale, respectively. When neuron contractility is relaxed, both techniques show significantly reduced firing. Firing resumes when contractility is restored. This finding highlights the essential contribution of neural contractility in fundamental brain functions and has implications for our understanding of neural physiology.
大脑中的神经元在突触处相互传递信息。长期以来,人们一直认为这种信息传递是通过生化过程实现的。在这里,我们揭示了神经元中的机械张力对于信息传递是必不可少的。通过使用体外培养的大鼠海马神经元,我们发现:1)神经元在形成突触后变得紧张/绷紧,从而形成一个收缩的神经网络;2)如果没有这种收缩性,神经元就无法放电。为了测量 3D(而不是 2D)细胞外基质中网络收缩的时间演变,我们开发了一种具有 1 nN 分辨率的超灵敏力传感器。我们采用多电极阵列和 iGluSnFR(一种谷氨酸传感器)分别在网络和单个突触尺度上定量测量神经元的放电情况。当神经元的收缩性被放松时,这两种技术都显示出显著降低的放电。当收缩性恢复时,放电恢复。这一发现突出了神经收缩性在基本大脑功能中的重要贡献,并对我们理解神经生理学具有启示意义。