Deng Wen-Tao, Sakurai Keisuke, Liu Jianwen, Dinculescu Astra, Li Jie, Pang Jijing, Min Seok-Hong, Chiodo Vince A, Boye Sanford L, Chang Bo, Kefalov Vladimir J, Hauswirth William W
Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17681-6. doi: 10.1073/pnas.0901382106. Epub 2009 Oct 6.
Rod and cone photoreceptors use similar but distinct sets of phototransduction proteins to achieve different functional properties, suitable for their role as dim and bright light receptors, respectively. For example, rod and cone visual pigments couple to distinct variants of the heterotrimeric G protein transducin. However, the role of the structural differences between rod and cone transducin alpha subunits (Talpha) in determining the functional differences between rods and cones is unknown. To address this question, we studied the translocation and signaling properties of rod Talpha expressed in cones and cone Talpha expressed in rods in three mouse strains: rod Talpha knockout, cone Talpha GNAT2(cpfl3) mutant, and rod and cone Talpha double mutant rd17 mouse. Surprisingly, although the rod/cone Talpha are only 79% identical, exogenously expressed rod or cone Talpha localized and translocated identically to endogenous Talpha in each photoreceptor type. Moreover, exogenously expressed rod or cone Talpha rescued electroretinogram responses (ERGs) in mice lacking functional cone or rod Talpha, respectively. Ex vivo transretinal ERG and single-cell recordings from rd17 retinas treated with rod or cone Talpha showed comparable rod sensitivity and response kinetics. These results demonstrate that cone Talpha forms a functional heterotrimeric G protein complex in rods and that rod and cone Talpha couple equally well to the rod phototransduction cascade. Thus, rod and cone transducin alpha-subunits are functionally interchangeable and their signaling properties do not contribute to the intrinsic light sensitivity differences between rods and cones. Additionally, the technology used here could be adapted for any such homologue swap desired.
视杆和视锥光感受器使用相似但不同的光转导蛋白组来实现不同的功能特性,分别适合它们作为暗光和亮光感受器的作用。例如,视杆和视锥视觉色素与异源三聚体G蛋白转导素的不同变体偶联。然而,视杆和视锥转导素α亚基(Tα)之间的结构差异在决定视杆和视锥之间功能差异方面的作用尚不清楚。为了解决这个问题,我们在三种小鼠品系中研究了在视锥中表达的视杆Tα和在视杆中表达的视锥Tα的转位和信号特性:视杆Tα敲除小鼠、视锥Tα GNAT2(cpfl3)突变小鼠以及视杆和视锥Tα双突变rd17小鼠。令人惊讶的是,尽管视杆/视锥Tα仅有79%的同一性,但外源表达的视杆或视锥Tα在每种光感受器类型中与内源性Tα的定位和转位相同。此外,外源表达的视杆或视锥Tα分别挽救了缺乏功能性视锥或视杆Tα的小鼠的视网膜电图反应(ERG)。用视杆或视锥Tα处理的rd17视网膜的离体跨视网膜ERG和单细胞记录显示出相当的视杆敏感性和反应动力学。这些结果表明,视锥Tα在视杆中形成功能性异源三聚体G蛋白复合物,并且视杆和视锥Tα与视杆光转导级联的偶联同样良好。因此,视杆和视锥转导素α亚基在功能上是可互换的,并且它们的信号特性不会导致视杆和视锥之间固有的光敏感性差异。此外,这里使用的技术可以适用于任何此类所需的同源物交换。