Suppr超能文献

工程化解剖形状的人骨移植物。

Engineering anatomically shaped human bone grafts.

机构信息

Department of Biomedical Engineering, Columbia University, VC 12-234, New York, NY 10032, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3299-304. doi: 10.1073/pnas.0905439106. Epub 2009 Oct 9.

Abstract

The ability to engineer anatomically correct pieces of viable and functional human bone would have tremendous potential for bone reconstructions after congenital defects, cancer resections, and trauma. We report that clinically sized, anatomically shaped, viable human bone grafts can be engineered by using human mesenchymal stem cells (hMSCs) and a "biomimetic" scaffold-bioreactor system. We selected the temporomandibular joint (TMJ) condylar bone as our tissue model, because of its clinical importance and the challenges associated with its complex shape. Anatomically shaped scaffolds were generated from fully decellularized trabecular bone by using digitized clinical images, seeded with hMSCs, and cultured with interstitial flow of culture medium. A bioreactor with a chamber in the exact shape of a human TMJ was designed for controllable perfusion throughout the engineered construct. By 5 weeks of cultivation, tissue growth was evidenced by the formation of confluent layers of lamellar bone (by scanning electron microscopy), markedly increased volume of mineralized matrix (by quantitative microcomputer tomography), and the formation of osteoids (histologically). Within bone grafts of this size and complexity cells were fully viable at a physiologic density, likely an important factor of graft function. Moreover, the density and architecture of bone matrix correlated with the intensity and pattern of the interstitial flow, as determined in experimental and modeling studies. This approach has potential to overcome a critical hurdle-in vitro cultivation of viable bone grafts of complex geometries-to provide patient-specific bone grafts for craniofacial and orthopedic reconstructions.

摘要

能够设计出具有解剖学正确性的、可行的和功能性的人类骨组织,对于先天性缺陷、癌症切除和创伤后的骨重建将具有巨大的潜力。我们报告说,可以使用人骨髓间充质干细胞(hMSCs)和“仿生”支架-生物反应器系统来设计具有临床尺寸、解剖形状和可行性的人类骨移植物。我们选择颞下颌关节(TMJ)髁突骨作为我们的组织模型,因为它具有临床重要性,而且其复杂形状带来了挑战。通过使用数字化临床图像,从完全去细胞化的小梁骨中生成具有解剖形状的支架,然后接种 hMSCs,并使用培养基的间质流进行培养。设计了一个具有与人类 TMJ 完全相同形状的腔室的生物反应器,用于在整个工程构建体中进行可控灌注。经过 5 周的培养,可以通过形成连续的板层骨层(通过扫描电子显微镜)、显著增加矿化基质的体积(通过定量微计算机断层扫描)以及形成类骨质(组织学)来证明组织生长。在这种大小和复杂性的骨移植物中,细胞以生理密度保持完全存活,这可能是移植物功能的一个重要因素。此外,在实验和建模研究中,骨基质的密度和结构与间质流的强度和模式相关。这种方法有可能克服一个关键的障碍——在体外培养具有复杂几何形状的可行骨移植物,为颅面和骨科重建提供患者特异性骨移植物。

相似文献

1
Engineering anatomically shaped human bone grafts.工程化解剖形状的人骨移植物。
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3299-304. doi: 10.1073/pnas.0905439106. Epub 2009 Oct 9.
3
Bioreactor cultivation of functional bone grafts.功能性骨移植的生物反应器培养
Methods Mol Biol. 2011;698:231-41. doi: 10.1007/978-1-60761-999-4_18.
9
Engineered vascularized bone grafts.工程化血管化骨移植物。
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3311-6. doi: 10.1073/pnas.0905445107. Epub 2010 Feb 2.

引用本文的文献

4
Orthopedic meta-implants.骨科金属植入物
APL Bioeng. 2024 Jan 19;8(1):010901. doi: 10.1063/5.0179908. eCollection 2024 Mar.
6
Stem-Cell Therapy: Filling Gaps in Oro-Maxillofacial Region.干细胞疗法:填补口腔颌面区域的空白
Cureus. 2023 Oct 17;15(10):e47171. doi: 10.7759/cureus.47171. eCollection 2023 Oct.

本文引用的文献

2
Engineering custom-designed osteochondral tissue grafts.工程定制化骨软骨组织移植物。
Trends Biotechnol. 2008 Apr;26(4):181-9. doi: 10.1016/j.tibtech.2007.12.009. Epub 2008 Mar 4.
4
Tissue engineering the mandibular condyle.下颌髁突的组织工程学
Tissue Eng. 2007 Aug;13(8):1955-71. doi: 10.1089/ten.2006.0152.
8
Craniofacial tissue engineering by stem cells.干细胞用于颅面组织工程
J Dent Res. 2006 Nov;85(11):966-79. doi: 10.1177/154405910608501101.
10
Gap junctions in skeletal development and function.缝隙连接在骨骼发育和功能中的作用
Biochim Biophys Acta. 2005 Dec 20;1719(1-2):69-81. doi: 10.1016/j.bbamem.2005.10.012. Epub 2005 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验