Suppr超能文献

链霉亲和素 2D 晶体底物用于原子力显微镜可视化生物分子过程。

Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy.

机构信息

Department of Physics, Kanazawa University, Kanazawa, Japan.

出版信息

Biophys J. 2009 Oct 21;97(8):2358-67. doi: 10.1016/j.bpj.2009.07.046.

Abstract

Flat substrate surfaces are a key to successful imaging of biological macromolecules by atomic force microscopy (AFM). Although usable substrate surfaces have been prepared for still imaging of immobilized molecules, surfaces that are more suitable have recently been required for dynamic imaging to accompany the progress of the scan speed of AFM. In fact, the state-of-the-art high-speed AFM has achieved temporal resolution of 30 ms, a capacity allowing us to trace molecular processes played by biological macromolecules. Here, we characterize three types of streptavidin two-dimensional crystals as substrates, concerning their qualities of surface roughness, uniformity, stability, and resistance to nonspecific protein adsorption. These crystal surfaces are commonly resistant to nonspecific protein adsorption, but exhibit differences in other properties to some extent. These differences must be taken into consideration, but these crystal surfaces are still useful for dynamic AFM imaging, as demonstrated by observation of calcium-induced changes in calmodulin, GroES binding to GroEL, and actin polymerization on the surfaces.

摘要

平面基底表面是原子力显微镜(AFM)成功成像生物大分子的关键。尽管已经制备了可用于固定分子静态成像的基底表面,但最近需要更适合的基底表面来进行动态成像,以配合 AFM 扫描速度的提高。事实上,最先进的高速 AFM 已经实现了 30 毫秒的时间分辨率,这一能力使我们能够追踪生物大分子参与的分子过程。在这里,我们将三种类型的链霉亲和素二维晶体作为基底进行了表征,涉及它们的表面粗糙度、均匀性、稳定性和抗非特异性蛋白质吸附的特性。这些晶体表面通常不易发生非特异性蛋白质吸附,但在其他性质上存在一定程度的差异。这些差异必须加以考虑,但这些晶体表面仍然适用于动态 AFM 成像,这可以通过观察钙诱导钙调蛋白的变化、GroES 与 GroEL 的结合以及表面上肌动蛋白的聚合来证明。

相似文献

1
Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy.
Biophys J. 2009 Oct 21;97(8):2358-67. doi: 10.1016/j.bpj.2009.07.046.
2
High-speed atomic force microscopy techniques for observing dynamic biomolecular processes.
Methods Enzymol. 2010;475:541-64. doi: 10.1016/S0076-6879(10)75020-5.
3
Optimum Substrates for Imaging Biological Molecules with High-Speed Atomic Force Microscopy.
Methods Mol Biol. 2018;1814:159-179. doi: 10.1007/978-1-4939-8591-3_10.
4
High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
Biochim Biophys Acta Gen Subj. 2020 Feb;1864(2):129325. doi: 10.1016/j.bbagen.2019.03.011. Epub 2019 Mar 16.
5
PEGylated surfaces for the study of DNA-protein interactions by atomic force microscopy.
Nanoscale. 2019 Nov 14;11(42):20072-20080. doi: 10.1039/c9nr07104k. Epub 2019 Oct 15.
6
Introduction to Atomic Force Microscopy (AFM) in Biology.
Curr Protoc Protein Sci. 2016 Aug 1;85:17.7.1-17.7.21. doi: 10.1002/cpps.14.
7
Two-dimensional protein crystals on a solid substrate: effect of surface ligand concentration.
Langmuir. 2007 Sep 11;23(19):9752-9. doi: 10.1021/la701399s. Epub 2007 Aug 11.
8
Probing protein-protein interactions in real time.
Nat Struct Biol. 2000 Aug;7(8):644-7. doi: 10.1038/77936.
9
Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed atomic force microscopy imaging.
Philos Trans R Soc Lond B Biol Sci. 2018 Jun 19;373(1749). doi: 10.1098/rstb.2017.0180.
10
Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope.
Ultramicroscopy. 2007 Feb-Mar;107(2-3):184-90. doi: 10.1016/j.ultramic.2006.07.008. Epub 2006 Aug 22.

引用本文的文献

1
Microfluidic measurement of the size and shape of lipid-anchored proteins.
Biophys J. 2024 Oct 1;123(19):3478-3489. doi: 10.1016/j.bpj.2024.08.026. Epub 2024 Sep 2.
2
Protein nanoarrays using the annexin A5 two-dimensional crystal on supported lipid bilayers.
Nanoscale Adv. 2023 Jun 19;5(15):3862-3870. doi: 10.1039/d3na00335c. eCollection 2023 Jul 25.
3
Three-Way DNA Junction as an End Label for DNA in Atomic Force Microscopy Studies.
Int J Mol Sci. 2022 Sep 27;23(19):11404. doi: 10.3390/ijms231911404.
5
Streptavidin Coverage on Biotinylated Surfaces.
ACS Appl Mater Interfaces. 2021 Dec 8;13(48):58114-58123. doi: 10.1021/acsami.1c16446. Epub 2021 Nov 23.
6
A combined approach to characterize ligand-induced solid-solid phase transitions in biomacromolecular crystals.
J Appl Crystallogr. 2021 May 9;54(Pt 3):787-796. doi: 10.1107/S1600576721003137. eCollection 2021 Jun 1.
7
High-speed AFM reveals subsecond dynamics of cardiac thin filaments upon Ca activation and heavy meromyosin binding.
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16384-16393. doi: 10.1073/pnas.1903228116. Epub 2019 Jul 29.
8
Structural Changes in Tubulin Sheets Caused by Immobilization on Solid Supports.
ACS Omega. 2018 Dec 31;3(12):18196-18202. doi: 10.1021/acsomega.8b02475. Epub 2018 Dec 24.
10
High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM.
Sci Rep. 2017 Jul 21;7(1):6166. doi: 10.1038/s41598-017-06249-1.

本文引用的文献

1
Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy.
Nanotechnology. 2008 Sep 24;19(38):384009. doi: 10.1088/0957-4484/19/38/384009. Epub 2008 Aug 12.
2
Structural information, resolution, and noise in high-resolution atomic force microscopy topographs.
Biophys J. 2009 May 6;96(9):3822-31. doi: 10.1016/j.bpj.2009.02.011.
3
Two families of chaperonin: physiology and mechanism.
Annu Rev Cell Dev Biol. 2007;23:115-45. doi: 10.1146/annurev.cellbio.23.090506.123555.
5
Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL.
EMBO J. 2006 Oct 4;25(19):4567-76. doi: 10.1038/sj.emboj.7601326. Epub 2006 Sep 14.
6
Sample preparation procedures for biological atomic force microscopy.
J Microsc. 2005 Jun;218(Pt 3):199-207. doi: 10.1111/j.1365-2818.2005.01480.x.
7
Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy.
Biophys J. 2005 Feb;88(2):1387-402. doi: 10.1529/biophysj.104.047399. Epub 2004 Nov 19.
8
GroEL mediates protein folding with a two successive timer mechanism.
Mol Cell. 2004 May 21;14(4):423-34. doi: 10.1016/s1097-2765(04)00261-8.
10
Cellular motility driven by assembly and disassembly of actin filaments.
Cell. 2003 Feb 21;112(4):453-65. doi: 10.1016/s0092-8674(03)00120-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验