Musich Phillip R, Zou Yue
Department of Biochemistry & Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0581, USA.
Aging (Albany NY). 2009 Jan;1(1):28-37. doi: 10.18632/aging.100012.
Progeria syndromes have in common a premature aging phenotype and increased genome instability. The susceptibility to DNA damage arises from a compromised repair system, either in the repair proteins themselves or in the DNA damage response pathways. The most severe progerias stem from mutations affecting lamin A production, a filamentous protein of the nuclear lamina. Hutchinson-Gilford progeria syndrome (HGPS) patients are heterozygous for aLMNA gene mutation while Restrictive Dermopathy (RD) individuals have a homozygous deficiency in the processing protease Zmpste24. These mutations generate the mutant lamin A proteins progerin and FC-lamina A, respectively, which cause nuclear deformations and chromatin perturbations. Genome instability is observed even though genome maintenance and repair genes appear normal. The unresolved question is what features of the DNA damage response pathways are deficient in HGPS and RD cells. Here we review and discuss recent findings which resolve some mechanistic details of how the accumulation of progerin/FC-lamin A proteins may disrupt DNA damage response pathways in HGPS and RD cells. As the mutant lamin proteins accumulate they sequester replication and repair factors, leading to stalled replication forks which collapse into DNA double-strand beaks (DSBs). In a reaction unique to HGPS and RD cells these accessible DSB termini bind Xeroderma pigmentosum group A (XPA) protein which excludes normal binding by DNA DSB repair proteins. The bound XPA also signals activation of ATM and ATR, arresting cell cycle progression, leading to arrested growth. In addition, the effective sequestration of XPA at these DSB damage sites makes HGPS and RD cells more sensitive to ultraviolet light and other mutagens normally repaired by the nucleotide excision repair pathway of which XPA is a necessary and specific component.
早衰综合征的共同特征是早衰表型和基因组不稳定性增加。对DNA损伤的易感性源于修复系统受损,这可能是由于修复蛋白本身或DNA损伤反应途径存在缺陷。最严重的早衰症源于影响核纤层蛋白A产生的突变,核纤层蛋白A是核纤层的一种丝状蛋白。哈钦森-吉尔福德早衰综合征(HGPS)患者是LMNA基因突变的杂合子,而限制性皮肤病(RD)个体在加工蛋白酶Zmpste24方面存在纯合缺陷。这些突变分别产生突变型核纤层蛋白A——早老素和FC-核纤层蛋白A,它们会导致核变形和染色质紊乱。尽管基因组维持和修复基因看起来正常,但仍观察到基因组不稳定。尚未解决的问题是,HGPS和RD细胞中的DNA损伤反应途径存在哪些缺陷。在这里,我们回顾并讨论了最近的研究发现,这些发现揭示了早老素/FC-核纤层蛋白A蛋白的积累可能如何破坏HGPS和RD细胞中DNA损伤反应途径的一些机制细节。随着突变型核纤层蛋白的积累,它们会隔离复制和修复因子,导致复制叉停滞,进而塌陷成DNA双链断裂(DSB)。在HGPS和RD细胞特有的反应中,这些可及的DSB末端结合着色性干皮病A组(XPA)蛋白,从而排除了DNA DSB修复蛋白的正常结合。结合的XPA还会发出激活ATM和ATR的信号,阻止细胞周期进程,导致生长停滞。此外,XPA在这些DSB损伤位点的有效隔离使HGPS和RD细胞对紫外线和其他诱变剂更敏感,而这些诱变剂通常由核苷酸切除修复途径修复,XPA是该途径必需的特定成分。