Suppr超能文献

通过与配体结合口袋的形状匹配来提高针对受体构象变化的虚拟筛选性能。

Improving virtual screening performance against conformational variations of receptors by shape matching with ligand binding pocket.

机构信息

Department of Physiology, University of Ulsan College of Medicine, Seoul 138-736, South Korea.

出版信息

J Chem Inf Model. 2009 Nov;49(11):2419-28. doi: 10.1021/ci9002365.

Abstract

In this report, we present a novel virtual high-throughput screening methodology to assist in computer-aided drug discovery. Our method, designated as SLIM, involves ligand-free shape and chemical feature matching. The procedure takes advantage of a negative image of a binding pocket in a target receptor. The negative image is a set of virtual atoms representing the inner shape and chemical features of the binding pocket. Using this image, SLIM implements a shape-based similarity search based on molecular volume superposition for the ensemble of conformers of each molecule. The superposed structures, prioritized by shape similarity, are subjected to comparison of chemical feature similarities. To validate the merits of the SLIM method, we compared its performance with those of three distinct widely used tools ROCS, GLIDE, and GOLD. ROCS was selected as a representative of the ligand-centric methods, and docking programs GLIDE and GOLD as representatives of the receptor-centric methods. Our data suggest that SLIM has overall hit ranking ability that is comparable to that of the docking method, retaining the high computational speed of the ligand-centric method. It is notable that the SLIM method offers consistently reliable screening quality against conformational variations of receptors, whereas the docking methods have limited screening performance.

摘要

在本报告中,我们提出了一种新颖的虚拟高通量筛选方法,以协助计算机辅助药物发现。我们的方法称为 SLIM,涉及无配体形状和化学特征匹配。该方法利用目标受体中结合口袋的负图像。负图像是一组代表结合口袋内部形状和化学特征的虚拟原子。使用此图像,SLIM 基于分子体积叠加对每个分子的构象集合执行基于形状的相似性搜索。根据形状相似性对重叠结构进行优先级排序,然后比较化学特征相似性。为了验证 SLIM 方法的优点,我们将其性能与三种广泛使用的工具 ROCS、GLIDE 和 GOLD 进行了比较。ROCS 被选为配体中心方法的代表,而对接程序 GLIDE 和 GOLD 被选为受体中心方法的代表。我们的数据表明,SLIM 具有与对接方法相当的整体命中排名能力,同时保持了配体中心方法的高计算速度。值得注意的是,SLIM 方法在受体构象变化方面提供了一致可靠的筛选质量,而对接方法的筛选性能有限。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验