Suppr超能文献

ADHD 共病研究:应用关联规则挖掘 (ARM) 于台湾全民健康保险数据库。

Comorbidity study of ADHD: applying association rule mining (ARM) to National Health Insurance Database of Taiwan.

机构信息

Department of Children and Adolescent Psychiatry, Beitou Armed Forces Hospital, Taiwan.

出版信息

Int J Med Inform. 2009 Dec;78(12):e75-83. doi: 10.1016/j.ijmedinf.2009.09.005. Epub 2009 Oct 22.

Abstract

OBJECTIVE

This paper intends to apply association rule mining (ARM) to explore the labyrinthian network of ADHD comorbidity, and to examine the practicality of ARM in comorbidity studies using clinic databases.

METHODS

From clinic records of enrollees of Taiwan National Health Insurance (NHI), 18,321 youngsters aged 18 or less with diagnosis of ADHD in 2001 were recruited as case group in this study. And all their clinic diagnoses made from 2000 to 2002, as comorbidity, were categorized according to "The International Classification of Disease, 9th Revision, Clinical Modification" (ICD-9-CM) diagnosis system. For comparison, fourfold non-ADHD controls were recruited from 2001s NHI enrollees on a random base but matched gender and age of cases. ARM was done with Apriori algorithm to examine the strengths of associations among those diagnoses. The support and confidence values of ARM results were examined. Comorbidity rates and relative risk (RR) ratios of both groups of each diagnosis were compared one another.

RESULTS

ADHD case group has apparently higher risk of comorbidity with psychiatric comorbidity than with other physical illnesses. From results of ARM, developmental delay (DD) appears as an important node between ADHD and anxiety disorder (support: 5.12%, confidence: 97.42%), mild mental retardation (support: 4.42%, confidence: 92.09%) and autism (support: 6.49%, confidence: 94.93%).

CONCLUSIONS

The finding of this study, an important role of DD between ADHD and other psychiatric comorbidity, supports neurological findings in developmental delay of ADHD children's front cortex, as well as some epidemiology findings. This study also demonstrated the practicality of ARM in comorbidity studies using enormous clinic databases like NHIRD.

摘要

目的

本文旨在应用关联规则挖掘(ARM)探索 ADHD 共病的复杂网络,并检验 ARM 在使用临床数据库进行共病研究中的实用性。

方法

从台湾全民健康保险(NHI)的就诊记录中,招募了 2001 年被诊断为 ADHD 的 18321 名 18 岁以下的年轻人作为本研究的病例组。根据“国际疾病分类,第 9 版,临床修订版”(ICD-9-CM)诊断系统,将他们在 2000 年至 2002 年期间的所有就诊诊断归类为共病。为了比较,从 2001 年的 NHI 参保者中随机选择性别和年龄与病例匹配的 4 倍非 ADHD 对照组。使用 Apriori 算法进行 ARM,以检查这些诊断之间关联的强度。检验了 ARM 结果的支持度和置信度值。比较了两组中每种诊断的共病率和相对风险(RR)比。

结果

ADHD 病例组的精神共病风险明显高于其他躯体疾病。从 ARM 的结果来看,发育迟缓(DD)是 ADHD 与焦虑障碍(支持:5.12%,置信:97.42%)、轻度智力障碍(支持:4.42%,置信:92.09%)和自闭症(支持:6.49%,置信:94.93%)之间的一个重要节点。

结论

本研究发现 DD 在 ADHD 与其他精神共病之间的重要作用,支持 ADHD 儿童前皮质发育迟缓的神经学发现以及一些流行病学发现。本研究还展示了使用 NHIRD 等庞大临床数据库进行共病研究中 ARM 的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验