Suppr超能文献

心血管疾病风险概况。

Cardiovascular disease risk profiles.

作者信息

Anderson K M, Odell P M, Wilson P W, Kannel W B

机构信息

National Heart, Lung, and Blood Institute, Framingham, MA.

出版信息

Am Heart J. 1991 Jan;121(1 Pt 2):293-8. doi: 10.1016/0002-8703(91)90861-b.

Abstract

This article presents prediction equations for several cardiovascular disease endpoints, which are based on measurements of several known risk factors. Subjects (n = 5573) were original and offspring subjects in the Framingham Heart Study, aged 30 to 74 years, and initially free of cardiovascular disease. Equations to predict risk for the following were developed: myocardial infarction, coronary heart disease (CHD), death from CHD, stroke, cardiovascular disease, and death from cardiovascular disease. The equations demonstrated the potential importance of controlling multiple risk factors (blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking, glucose intolerance, and left ventricular hypertrophy) as opposed to focusing on one single risk factor. The parametric model used was seen to have several advantages over existing standard regression models. Unlike logistic regression, it can provide predictions for different lengths of time, and probabilities can be expressed in a more straightforward way than the Cox proportional hazards model.

摘要

本文介绍了几种心血管疾病终点的预测方程,这些方程基于对几种已知风险因素的测量。受试者(n = 5573)为弗雷明汉心脏研究中的原始受试者及其后代,年龄在30至74岁之间,最初无心血管疾病。开发了用于预测以下疾病风险的方程:心肌梗死、冠心病(CHD)、冠心病死亡、中风、心血管疾病以及心血管疾病死亡。这些方程证明了控制多种风险因素(血压、总胆固醇、高密度脂蛋白胆固醇、吸烟、葡萄糖耐量异常和左心室肥厚)相对于仅关注单一风险因素的潜在重要性。所使用的参数模型相较于现有的标准回归模型具有多个优势。与逻辑回归不同,它可以针对不同的时间段提供预测,并且概率的表达比Cox比例风险模型更为直接。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验