DASSR, Cranfield University, Defence Academy of the United Kingdom, Shrivenham SN6 8LA, United Kingdom.
ACS Nano. 2009 Oct 27;3(10):3308-14. doi: 10.1021/nn9009592.
Central to porous nanomaterials, with applications spanning catalysts to fuel cells is their (perceived) "fragile" structure, which must remain structurally intact during application lifespan. Here, we use atomistic simulation to explore the mechanical strength of a porous nanomaterial as a first step to characterizing the structural durability of nanoporous materials. In particular, we simulate the mechanical deformation of mesoporous Li-MnO(2) under stress using molecular dynamics simulation. Specifically, such rechargeable Li-ion battery materials suffer volume changes during charge/discharge cycles as Li ions are repeatedly inserted and extracted from the host beta-MnO(2) causing failure as a result of localized stress. However, mesoporous beta-MnO(2) does not suffer structural collapse during cycling. To explain this behavior, we generate a full atomistic model of mesoporous beta-MnO(2) and simulate localized stress associated with charge/discharge cycles. We calculate that mesoporous beta-MnO(2) undergoes a volume expansion of about 16% when Li is fully intercalated, which can only be sustained without structural collapse, if the nanoarchitecture is symmetrically porous, enabling elastic deformation during intercalation. Conversely, we predict that unsymmetric materials, such as nanoparticulate beta-MnO(2), deform plastically, resulting in structural collapse of (Li) storage sites and blocked transport pathways; animations revealing elastic and plastic deformation mechanisms under mechanical load and crystallization of mesoporous Li-MnO(2) are presented at the atomistic level.
多孔纳米材料的核心是其(被认为是)“脆弱”的结构,这种结构在应用寿命期间必须保持结构完整,其应用范围涵盖催化剂到燃料电池。在这里,我们使用原子模拟来探索多孔纳米材料的机械强度,作为表征纳米多孔材料结构耐久性的第一步。具体来说,我们使用分子动力学模拟模拟了介孔 Li-MnO(2) 在应力下的机械变形。具体而言,由于锂离子在主体β-MnO(2)中反复插入和提取,这种可再充电的锂离子电池材料在充放电循环中会发生体积变化,从而导致局部应力失效。然而,介孔β-MnO(2)在循环过程中不会发生结构坍塌。为了解释这种行为,我们生成了介孔β-MnO(2)的全原子模型,并模拟了与充放电循环相关的局部应力。我们计算出,当 Li 完全嵌入时,介孔β-MnO(2)的体积膨胀约为 16%,如果纳米结构是对称多孔的,那么只有在没有结构坍塌的情况下才能维持这种膨胀,从而能够在嵌入过程中实现弹性变形。相反,我们预测,非对称材料,如纳米级β-MnO(2),会发生塑性变形,导致(Li)存储位点的结构坍塌和传输途径受阻;在原子水平上展示了在机械负载下弹性和塑性变形机制以及介孔 Li-MnO(2)的结晶的动画。