Suppr超能文献

学术研讨会论文:数清我们头上的头发:表型组学的共同挑战与前景

Colloquium papers: Numbering the hairs on our heads: the shared challenge and promise of phenomics.

作者信息

Houle David

机构信息

Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jan 26;107 Suppl 1(Suppl 1):1793-9. doi: 10.1073/pnas.0906195106. Epub 2009 Oct 26.

Abstract

Evolution and medicine share a dependence on the genotype-phenotype map. Although genotypes exist and are inherited in a discrete space convenient for many sorts of analyses, the causation of key phenomena such as natural selection and disease takes place in a continuous phenotype space whose relationship to the genotype space is only dimly grasped. Direct study of genotypes with minimal reference to phenotypes is clearly insufficient to elucidate these phenomena. Phenomics, the comprehensive study of phenotypes, is therefore essential to understanding biology. For all of the advances in knowledge that a genomic approach to biology has brought, awareness is growing that many phenotypes are highly polygenic and susceptible to genetic interactions. Prime examples are common human diseases. Phenomic thinking is starting to take hold and yield results that reveal why it is so critical. The dimensionality of phenotypic data are often extremely high, suggesting that attempts to characterize phenotypes with a few key measurements are unlikely to be completely successful. However, once phenotypic data are obtained, causation can turn out to be unexpectedly simple. Phenotypic data can be informative about the past history of selection and unexpectedly predictive of long-term evolution. Comprehensive efforts to increase the throughput and range of phenotyping are an urgent priority.

摘要

进化生物学和医学都依赖于基因型-表型图谱。尽管基因型存在并在便于多种分析的离散空间中遗传,但诸如自然选择和疾病等关键现象的因果关系发生在连续的表型空间中,而我们对其与基因型空间的关系还知之甚少。仅以最少的表型参考直接研究基因型显然不足以阐明这些现象。因此,表型组学,即对表型的全面研究,对于理解生物学至关重要。尽管基因组学方法给生物学知识带来了诸多进展,但人们越来越意识到,许多表型是高度多基因的,并且容易受到基因相互作用的影响。常见的人类疾病就是典型例子。表型组学思维开始占据主导并产生成果,揭示了其为何如此关键。表型数据的维度通常极高,这表明试图通过一些关键测量来表征表型不太可能完全成功。然而,一旦获得表型数据,因果关系可能会出人意料地简单。表型数据可以提供有关过去选择历史的信息,并意外地预测长期进化。提高表型分析的通量和范围的全面努力是当务之急。

相似文献

2
The genotype-phenotype map of an evolving digital organism.一种不断进化的数字有机体的基因型-表型图谱。
PLoS Comput Biol. 2017 Feb 27;13(2):e1005414. doi: 10.1371/journal.pcbi.1005414. eCollection 2017 Feb.
4
Phenomics: the systematic study of phenotypes on a genome-wide scale.表型组学:在全基因组范围内对表型进行系统研究。
Neuroscience. 2009 Nov 24;164(1):30-42. doi: 10.1016/j.neuroscience.2009.01.027. Epub 2009 Jan 20.
6
Phenomics: the next challenge.表型组学:下一个挑战。
Nat Rev Genet. 2010 Dec;11(12):855-66. doi: 10.1038/nrg2897.
7
Gene-culture coevolution under selection.选择作用下的基因-文化共同进化
Theor Popul Biol. 2018 May;121:33-44. doi: 10.1016/j.tpb.2018.03.001. Epub 2018 Apr 8.
8
Phenotypic Evolution With and Beyond Genome Evolution.基因组进化及其后的表型进化。
Curr Top Dev Biol. 2016;119:291-347. doi: 10.1016/bs.ctdb.2016.04.002. Epub 2016 May 11.
9
The molecular origins of evolutionary innovations.进化创新的分子起源。
Trends Genet. 2011 Oct;27(10):397-410. doi: 10.1016/j.tig.2011.06.002. Epub 2011 Aug 27.

引用本文的文献

8
Clarifying dairy calf mortality phenotypes through postmortem analysis.通过死后分析明确奶牛犊牛死亡表型。
J Dairy Sci. 2019 May;102(5):4415-4426. doi: 10.3168/jds.2018-15527. Epub 2019 Mar 14.
9
A Multivariate Genome-Wide Association Study of Wing Shape in .一种对 翅膀形状的多变量全基因组关联研究。
Genetics. 2019 Apr;211(4):1429-1447. doi: 10.1534/genetics.118.301342. Epub 2019 Feb 21.
10
A high-throughput and open-source platform for embryo phenomics.高通量且开源的胚胎表型组学平台。
PLoS Biol. 2018 Dec 13;16(12):e3000074. doi: 10.1371/journal.pbio.3000074. eCollection 2018 Dec.

本文引用的文献

1
ADAPTIVE RADIATION ALONG GENETIC LINES OF LEAST RESISTANCE.沿阻力最小遗传路线的适应性辐射
Evolution. 1996 Oct;50(5):1766-1774. doi: 10.1111/j.1558-5646.1996.tb03563.x.
2
3
VISUALIZING MULTIVARIATE SELECTION.可视化多变量选择
Evolution. 1989 Sep;43(6):1209-1222. doi: 10.1111/j.1558-5646.1989.tb02569.x.
5
THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS.对相关性状选择的度量
Evolution. 1983 Nov;37(6):1210-1226. doi: 10.1111/j.1558-5646.1983.tb00236.x.
6
Genomic sister-disorders of neurodevelopment: an evolutionary approach.神经发育的基因组姐妹疾病:一种进化方法。
Evol Appl. 2009 Feb;2(1):81-100. doi: 10.1111/j.1752-4571.2008.00056.x. Epub 2009 Jan 7.
10
Genomewide association studies--illuminating biologic pathways.全基因组关联研究——揭示生物学通路
N Engl J Med. 2009 Apr 23;360(17):1699-701. doi: 10.1056/NEJMp0808934. Epub 2009 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验