Institute for Engineering in Medicine, Center for Scientific Computation in Imaging, University of California San Diego, 8950 Villa La Jolla Dr., Suite B227, La Jolla, CA, 92037, USA.
Department of Radiology, Center for Functional MRI, University of California San Diego, 9500 Gilman Dr., #0677, La Jolla, CA, 92093-0677, USA.
Sci Rep. 2021 Jul 14;11(1):14438. doi: 10.1038/s41598-021-93490-4.
As computed tomography and related technologies have become mainstream tools across a broad range of scientific applications, each new generation of instrumentation produces larger volumes of more-complex 3D data. Lagging behind are step-wise improvements in computational methods to rapidly analyze these new large, complex datasets. Here we describe novel computational methods to capture and quantify volumetric information, and to efficiently characterize and compare shape volumes. It is based on innovative theoretical and computational reformulation of volumetric computing. It consists of two theoretical constructs and their numerical implementation: the spherical wave decomposition (SWD), that provides fast, accurate automated characterization of shapes embedded within complex 3D datasets; and symplectomorphic registration with phase space regularization by entropy spectrum pathways (SYMREG), that is a non-linear volumetric registration method that allows homologous structures to be correctly warped to each other or a common template for comparison. Together, these constitute the Shape Analysis for Phenomics from Imaging Data (SAPID) method. We demonstrate its ability to automatically provide rapid quantitative segmentation and characterization of single unique datasets, and both inter-and intra-specific comparative analyses. We go beyond pairwise comparisons and analyze collections of samples from 3D data repositories, highlighting the magnified potential our method has when applied to data collections. We discuss the potential of SAPID in the broader context of generating normative morphologies required for meaningfully quantifying and comparing variations in complex 3D anatomical structures and systems.
随着计算机断层扫描和相关技术在广泛的科学应用中成为主流工具,每一代新的仪器设备都产生了更大体积、更复杂的 3D 数据。与之相比,快速分析这些新的大型、复杂数据集的计算方法只是逐步得到了改进。在这里,我们描述了一种新的计算方法,用于捕获和量化体积信息,并有效地描述和比较形状体积。它基于对体积计算的创新理论和计算重构。它由两个理论结构及其数值实现组成:球面波分解 (SWD),可快速、准确地自动描述复杂 3D 数据集中嵌入的形状;以及通过熵谱途径的拟共形配准 (SYMREG),这是一种非线性体积配准方法,允许同源结构彼此正确变形,或者对共同模板进行比较。这些共同构成了成像数据分析中的形态分析 (SAPID) 方法。我们展示了它自动提供快速定量分割和单个独特数据集的特征描述,以及种内和种间比较分析的能力。我们超越了两两比较,并分析了来自 3D 数据存储库的样本集合,突出了我们的方法在应用于数据集合时具有的放大潜力。我们还在更广泛的背景下讨论了 SAPID 在生成用于定量比较和比较复杂 3D 解剖结构和系统的形态变化所需的规范形态方面的潜力。