Physiology of Microorganisms, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany.
Biochem J. 2010 Jan 15;425(2):425-34. doi: 10.1042/BJ20090775.
HOs (haem oxygenases) catalyse the oxidative cleavage of haem to BV (biliverdin), iron and carbon monoxide. In plants, the product of the reaction is BV IXalpha, the precursor of the PHY (phytochrome) chromophore and is thus essential for proper photomorphogenesis. Arabidopsis thaliana contains one major biochemically characterized HO (HY1) and three additional putative HOs (HO2, HO3 and HO4). All four proteins are encoded in the nucleus but contain chloroplast translocation sequences at their N-termini. The transit peptides of all four proteins are sufficient for chloroplast translocalization as shown by GFP (green fluorescent protein) reporter gene fusions. Overall, all four proteins can be divided into two subfamilies: HO1 and HO2. Here we show that all members of the HO1 subfamily (HY1, HO3 and HO4) are active monomeric HOs and can convert haem to BV IXalpha using spinach Fd (ferredoxin) as an electron donor. Addition of a second electron donor, such as ascorbate, led to a 10-fold increase in the haem conversion rate. Furthermore, haem turnover is also promoted by light when spinach thylakoids are present. All HO1 family members displayed similar kinetic parameters indicating they all have a possible involvement in PHY chromophore biosynthesis. HO2 did not yield sufficient amounts of soluble protein and therefore required the construction of a synthetic gene adapted to the codon usage of Escherichia coli. HO2 is unable to bind or degrade haem and therefore it is not a haem oxygenase. However, HO2 shows strong binding of proto IX (protoporphyrin IX), a precursor for both haem and chlorophyll biosynthesis. A possible function of HO2 in the regulation of tetrapyrrole metabolism is discussed.
HOs(血红素加氧酶)催化血红素的氧化裂解为 BV(胆红素)、铁和一氧化碳。在植物中,反应的产物是 BVIXalpha,是 PHY(光敏色素)发色团的前体,因此对正常的光形态发生至关重要。拟南芥含有一个主要的生化特征 HO(HY1)和三个额外的假定 HOs(HO2、HO3 和 HO4)。这四种蛋白质都在核中编码,但在其 N 端含有叶绿体转运序列。所有四种蛋白质的转运肽都足以进行叶绿体转运,这一点通过 GFP(绿色荧光蛋白)报告基因融合得到证明。总的来说,所有四种蛋白质可以分为两个亚家族:HO1 和 HO2。在这里,我们表明 HO1 亚家族的所有成员(HY1、HO3 和 HO4)都是活性单体 HOs,可以使用菠菜 Fd(铁氧还蛋白)作为电子供体将血红素转化为 BVIXalpha。添加第二个电子供体,如抗坏血酸,会使血红素转化率提高 10 倍。此外,当菠菜类囊体存在时,光也会促进血红素的周转。所有 HO1 家族成员显示出相似的动力学参数,表明它们都可能参与 PHY 发色团的生物合成。HO2 没有产生足够量的可溶性蛋白,因此需要构建一个适应大肠杆菌密码子使用的合成基因。HO2 不能结合或降解血红素,因此它不是血红素加氧酶。然而,HO2 强烈结合原卟啉 IX(原卟啉 IX),原卟啉 IX 是血红素和叶绿素生物合成的前体。HO2 在四吡咯代谢调节中的可能功能正在讨论中。