Suppr超能文献

悬浮液的比电容(特别针对血液)。

THE ELECTRIC CAPACITY OF SUSPENSIONS WITH SPECIAL REFERENCE TO BLOOD.

机构信息

Department of Biophysics, Cleveland Clinic Foundation, Cleveland.

出版信息

J Gen Physiol. 1925 Nov 20;9(2):137-52. doi: 10.1085/jgp.9.2.137.

Abstract
  1. The specific capacity of a suspension is that capacity which) combined in parallel with a certain resistance, electrically balances 1 cm. cube of the suspension. 2. The following formula holds for the specific capacity of a suspension of spheroids, each of which is composed of a well conducting interior surrounded by a thin membrane of a comparatively high resistance: See PDF for Equation C, specific capacity of suspension; C(o), static capacity of one sq. cm. of membrane; r, r(1) specific resistances respectively of suspension and of suspending liquid; 2 q major axis of spheroid, alpha constant tabulated in Table I. 3. The following formula holds practically for any suspension whatever the form of the suspended particle. See PDF for Equation C = C(100) being the specific capacity of a suspension with a concentration of 100 per cent. Formulae (1a) and (1b) hold only for the case, when the frequency is so low, that the impedance of the static capacity of the membrane around a single particle is high as compared with the resistance of the interior of the particle. The formulae hold also for a suspension of homogeneous particles, when polarization takes place at the surface of each particle, provided the polarization resistance is low as compared with the impedance of the polarization capacity. 4. A description is given of a method for measuring the capacity of a suspension at frequencies between 800 and 4(1/2) million cycles. By means of a specially designed bridge, a substitution method is employed, by which in the last analysis the suspension is compared with the suspending liquid which is so diluted as to have the same specific resistance as the suspension, consecutive measurements being made in the same electrolytic cell. 5. Formula (1b) is verified by measurements of the capacity of suspensions of varying volume concentrations of the red corpuscles of a dog. 6. By means of the above measurements, the value of C(o) is calculated by equation (1a). 7. It is found that C(o) is independent of the frequency up to 4(1/2) million cycles and that it is also independent of the suspending liquid. These results furnish considerable evidence of the validity of the theory, that C(o) represents the static capacity of a corpuscle membrane. 8. On this assumption and using a probable value for the dielectric constant of the membrane, the thickness of the membrane is calculated to be 3.3.10(-7)cm.
摘要
  1. 悬浮液的比电容量是指与一定电阻并联时能电平衡 1 立方厘米悬浮液的容量。

  2. 对于由一个良导体内部被一个高电阻的薄膜包围而成的每个球体的悬浮液,下列公式适用于悬浮液的比电容量:见 PDF 中的公式 C,悬浮液的比电容量;C(o),膜的每平方厘米的静态容量;r,r(1)悬浮液和悬浮液的各自电阻;2q 长半轴的球体,α 常数在表 I 中列出。

  3. 实际上,对于任何形式的悬浮液,以下公式都适用。见 PDF 中的公式 C=C(100),这是浓度为 100%的悬浮液的比电容量。公式(1a)和(1b)仅适用于频率非常低的情况,即单个颗粒周围的膜的静态容量的阻抗与颗粒内部的电阻相比非常高。当每个颗粒的表面发生极化时,这些公式也适用于均匀颗粒的悬浮液,只要极化电阻与极化容量的阻抗相比足够低。

  4. 描述了一种在 800 到 4(1/2)百万赫兹频率之间测量悬浮液容量的方法。通过专门设计的电桥,采用替代法,最终将悬浮液与稀释至与悬浮液具有相同比电阻的悬浮液进行比较,在同一电解池中连续进行测量。

  5. 通过测量狗的红细胞悬浮液的不同体积浓度的容量,验证了公式(1b)。

  6. 通过上述测量,由公式(1a)计算 C(o)的值。

  7. 发现 C(o)在 4(1/2)百万赫兹及以下频率下是独立的,并且也与悬浮液无关。这些结果为 C(o)代表红细胞膜的静态容量的理论提供了充分的证据。

  8. 根据这个假设,并使用膜的介电常数的可能值,计算出膜的厚度为 3.3.10(-7)cm。

相似文献

1
THE ELECTRIC CAPACITY OF SUSPENSIONS WITH SPECIAL REFERENCE TO BLOOD.
J Gen Physiol. 1925 Nov 20;9(2):137-52. doi: 10.1085/jgp.9.2.137.
3
ELECTRIC IMPEDANCE OF HIPPONOE EGGS.
J Gen Physiol. 1935 Jul 20;18(6):877-87. doi: 10.1085/jgp.18.6.877.
4
ELECTRIC IMPEDANCE OF ARBACIA EGGS.
J Gen Physiol. 1936 Mar 20;19(4):625-32. doi: 10.1085/jgp.19.4.625.
5
ELECTRIC IMPEDANCE OF SUSPENSIONS OF ARBACIA EGGS.
J Gen Physiol. 1928 Sep 20;12(1):37-54. doi: 10.1085/jgp.12.1.37.
6
ELECTRIC IMPEDANCE OF ASTERIAS EGGS.
J Gen Physiol. 1936 Mar 20;19(4):609-23. doi: 10.1085/jgp.19.4.609.
7
Low-frequency dielectric response of charged oblate spheroidal particles immersed in an electrolyte.
Phys Rev E. 2017 Apr;95(4-1):042601. doi: 10.1103/PhysRevE.95.042601. Epub 2017 Apr 5.
8
An analysis of light-induced admittance changes in rod outer segments.
J Physiol. 1973 Feb;229(1):185-220. doi: 10.1113/jphysiol.1973.sp010134.
9
Dependence of the dielectric properties of suspensions on the volume fraction of suspended particles.
J Colloid Interface Sci. 2007 May 15;309(2):283-8. doi: 10.1016/j.jcis.2006.12.012. Epub 2007 Jan 18.
10
Electric permittivity of concentrated suspensions of elongated goethite particles.
J Colloid Interface Sci. 2010 Mar 15;343(2):564-73. doi: 10.1016/j.jcis.2009.11.063. Epub 2009 Dec 4.

引用本文的文献

1
Relationship between ion currents and membrane capacitance in canine ventricular myocytes.
Sci Rep. 2024 May 16;14(1):11241. doi: 10.1038/s41598-024-61736-6.
3
Impedance Imaging of Cells and Tissues: Design and Applications.
BME Front. 2022 Jun 9;2022:1-21. doi: 10.34133/2022/9857485.
5
Dielectric Spectroscopy Based Detection of Specific and Nonspecific Cellular Mechanisms.
Sensors (Basel). 2021 May 3;21(9):3177. doi: 10.3390/s21093177.
8
An Electrokinetically-Driven Microchip for Rapid Entrapment and Detection of Nanovesicles.
Micromachines (Basel). 2020 Dec 24;12(1):11. doi: 10.3390/mi12010011.
9
A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy.
J Gen Physiol. 2019 Aug 5;151(8):974-985. doi: 10.1085/jgp.201812227. Epub 2019 Jun 28.
10
Design and Utility of a Point-of-Care Microfluidic Platform to Assess Hematocrit and Blood Coagulation.
Cell Mol Bioeng. 2018 Dec;11(6):519-529. doi: 10.1007/s12195-018-0541-z. Epub 2018 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验