Suppr超能文献

在溶液中的视紫红质。

ON RHODOPSIN IN SOLUTION.

机构信息

Biological Laboratories of Harvard University, Cambridge.

出版信息

J Gen Physiol. 1938 Jul 20;21(6):795-832. doi: 10.1085/jgp.21.6.795.

Abstract
  1. The properties of rhodopsin in solution have been examined in preparations from marine fishes, frogs, and mammals. 2. The bleaching of neutral rhodopsin in solution includes a photic and at least three thermal ("dark") processes. Thermal reactions account for approximately half the total fall in extinction at 500 mmicro. 3. Bleaching has been investigated at various pH's from 3.9 to about 11. With increase in pH the velocity of the thermal components increases rapidly. Though the spectrum of rhodopsin itself is scarcely affected by change in pH, the spectra of all product-mixtures following irradiation are highly pH-labile. 4. The spectrum of pure rhodopsin-or of the rhodopsin chromophore-is fixed within narrow limits. The extinction at 400 mmicro lies between 0.20 to 0.32 of that at the maximum. 5. Within the limitations of available data, the spectrum of pure rhodopsin corresponds in form and position with the spectral sensitivity of human rod vision, computed at the retinal surface. 6. The nature of bleaching of rhodopsin in solution, its kinetics, and its significance in the retinal cycle are discussed.
摘要
  1. 已经在来自海洋鱼类、青蛙和哺乳动物的制剂中检查了溶液中视紫红质的性质。

  2. 中性视紫红质在溶液中的漂白包括光和至少三个热(“暗”)过程。热反应约占 500nm 处消光值总下降的一半。

  3. 在 3.9 到约 11 的各种 pH 值下研究了漂白。随着 pH 值的增加,热组分的速度迅速增加。虽然视紫红质本身的光谱几乎不受 pH 值变化的影响,但照射后所有产物混合物的光谱都高度不稳定。

  4. 纯视紫红质或视紫红质生色团的光谱在狭窄的范围内固定。在 400nmicro 处的消光值介于最大值的 0.20 到 0.32 之间。

  5. 在可用数据的限制内,纯视紫红质的光谱在形式和位置上与在视网膜表面计算的人棒状视敏度的光谱灵敏度相对应。

  6. 讨论了溶液中视紫红质漂白的性质、动力学及其在视网膜循环中的意义。

相似文献

1
ON RHODOPSIN IN SOLUTION.
J Gen Physiol. 1938 Jul 20;21(6):795-832. doi: 10.1085/jgp.21.6.795.
2
Iodopsin.
J Gen Physiol. 1955 May 20;38(5):623-81. doi: 10.1085/jgp.38.5.623.
3
The interplay o light and heat in bleaching rhodopsin.
J Gen Physiol. 1952 Jan;35(3):495-517. doi: 10.1085/jgp.35.3.495.
4
Cis-trans isomers of vitamin A and retinene in the rhodopsin system.
J Gen Physiol. 1952 Nov;36(2):269-315. doi: 10.1085/jgp.36.2.269.
5
Human rhodopsin.
Science. 1958 Jan 31;127(3292):222-6. doi: 10.1126/science.127.3292.222.
6
The photosensitive retinal pigments of fishes from relatively turbid coastal waters.
J Gen Physiol. 1958 Nov 20;42(2):445-59. doi: 10.1085/jgp.42.2.445.
7
The visual system of the alligator.
J Gen Physiol. 1957 May 20;40(5):703-13. doi: 10.1085/jgp.40.5.703.
8
Photophysiological functions of visual pigments.
Adv Biophys. 1984;17:5-67. doi: 10.1016/0065-227x(84)90024-8.
9
A new photosensitive pigment of the euryhaline teleost, Gillichthys mirabilis.
J Gen Physiol. 1956 Nov 20;40(2):233-49. doi: 10.1085/jgp.40.2.233.

引用本文的文献

1
Compensation of inner retina to early-stage photoreceptor degeneration in a Rho mouse model of retinitis pigmentosa.
Exp Eye Res. 2024 Mar;240:109826. doi: 10.1016/j.exer.2024.109826. Epub 2024 Feb 8.
2
Molecular Biology of Microbial Rhodopsins.
Methods Mol Biol. 2022;2501:53-69. doi: 10.1007/978-1-0716-2329-9_2.
5
Evolution, Development and Function of Vertebrate Cone Oil Droplets.
Front Neural Circuits. 2017 Dec 8;11:97. doi: 10.3389/fncir.2017.00097. eCollection 2017.
6
Dark-Adapted Chromatic Perimetry for Measuring Rod Visual Fields in Patients with Retinitis Pigmentosa.
Transl Vis Sci Technol. 2017 Aug 9;6(4):15. doi: 10.1167/tvst.6.4.15. eCollection 2017 Jul.
7
Unconventional Roles of Opsins.
Annu Rev Cell Dev Biol. 2017 Oct 6;33:241-264. doi: 10.1146/annurev-cellbio-100616-060432. Epub 2017 Jun 9.
8
Distribution of retinoids and 3,4-didehydroretinoids in the goldfish.
Can J Zool. 1986 Sep;64(9):2066-2067. doi: 10.1139/z86-313.
9
The photochemistry of vision.
Doc Ophthalmol. 1949;3:94-137. doi: 10.1007/BF00162600.
10
Quanta explantation of vision.
Doc Ophthalmol. 1950;4:23-115. doi: 10.1007/BF00141314.

本文引用的文献

1
THE REGENERATION OF VISUAL PURPLE IN SOLUTION.
Science. 1936 Oct 9;84(2180):331-3. doi: 10.1126/science.84.2180.331.
2
The absorption spectra of visual purple and of indicator yellow.
J Physiol. 1937 Jun 3;89(4):331-58. doi: 10.1113/jphysiol.1937.sp003482.
3
The regeneration of visual purple: its relation to dark adaptation and night blindness.
J Physiol. 1931 Apr 24;71(4):442-58. doi: 10.1113/jphysiol.1931.sp002749.
4
Dark Adaptation after Varying of Light Adaptation.
Proc Natl Acad Sci U S A. 1936 Jun;22(6):400-4. doi: 10.1073/pnas.22.6.400.
5
The Visual Cycle and Protein Denaturation.
Proc Natl Acad Sci U S A. 1936 Feb;22(2):147-9. doi: 10.1073/pnas.22.2.147.
6
On the Structure of Native, Denatured, and Coagulated Proteins.
Proc Natl Acad Sci U S A. 1936 Jul;22(7):439-47. doi: 10.1073/pnas.22.7.439.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验