Suppr超能文献

Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver.

作者信息

Mészáros K, Bojta J, Bautista A P, Lang C H, Spitzer J J

机构信息

Department of Physiology, Louisiana State University Medical Center, New Orleans 70112.

出版信息

Am J Physiol. 1991 Jan;260(1 Pt 1):G7-12. doi: 10.1152/ajpgi.1991.260.1.G7.

Abstract

There are several types of glucose-consuming, immunologically active nonparenchymal cells interspersed among the glucose-producing parenchymal liver cells. Combining the in vivo 2-deoxyglucose tracer technique with cell separation methods enabled us to investigate the effect of Escherichia coli endotoxin on the rate of glucose utilization by the nonparenchymal cells. Rats were injected with [14C]deoxyglucose, and intracellular 2-deoxyglucose 6-phosphate was determined in different liver cell fractions. Parenchymal, Kupffer, and endothelial cells as well as polymorphonuclear leukocytes (PMN) were separated from the liver by centrifugal elutriation followed by Ficoll-Hypaque density gradient. The number of PMN obtained from the liver was increased severalfold 3 h after endotoxin and was comparable to the number of Kupffer cells. Glucose utilization by the liver of fasted rats was due predominantly to nonparenchymal cells. Endotoxin enhanced the rate of glucose utilization by Kupffer (6.7-fold) and endothelial (2.7-fold) cells and by the infiltrated hepatic PMN (5.4-fold). Enhanced glucose metabolism of immunologically active cells is part of the hepatic immune response and subserves the antibacterial defense of the body. The activated cells, however, may also have the potential of causing tissue damage by releasing harmful toxic metabolites.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验