Centre for Actuarial Research, University of Cape Town, Rondebosch, Cape Town, South Africa.
Sex Transm Infect. 2010 Jun;86(3):169-74. doi: 10.1136/sti.2009.037341. Epub 2009 Nov 1.
To propose a Bayesian approach to uncertainty analysis of sexually transmitted infection (STI) models, which can be used to quantify uncertainty in model assessments of policy options, estimate regional STI prevalence from sentinel surveillance data and make inferences about STI transmission and natural history parameters.
Prior distributions are specified to represent uncertainty regarding STI parameters. A likelihood function is defined using a hierarchical approach that takes account of variation between study populations, variation in diagnostic accuracy as well as random binomial variation. The method is illustrated using a model of syphilis, gonorrhoea, chlamydial infection and trichomoniasis in South Africa.
Model estimates of STI prevalence are in good agreement with observations. Out-of-sample projections and cross-validations also show that the model is reasonably well calibrated. Model predictions of the impact of interventions are subject to significant uncertainty: the predicted reductions in the prevalence of syphilis by 2020, as a result of doubling the rate of health seeking, increasing the proportion of private practitioners using syndromic management protocols and screening all pregnant women for syphilis, are 43% (95% CI 3% to 77%), 9% (95% CI 1% to 19%) and 6% (95% CI 4% to 7%), respectively.
This study extends uncertainty analysis techniques for fitted HIV/AIDS models to models that are fitted to other STI prevalence data. There is significant uncertainty regarding the relative effectiveness of different STI control strategies. The proposed technique is reasonable for estimating uncertainty in past STI prevalence levels and for projections of future STI prevalence.
提出一种贝叶斯方法来分析性传播感染(STI)模型的不确定性,该方法可用于量化模型评估政策选择的不确定性,从哨点监测数据估计区域 STI 流行率,并对 STI 传播和自然史参数进行推断。
指定先验分布来表示 STI 参数的不确定性。使用分层方法定义似然函数,该方法考虑了研究人群之间的变异、诊断准确性的变异以及随机二项式变异。该方法使用南非梅毒、淋病、衣原体感染和滴虫病的模型进行了说明。
STI 流行率的模型估计与观察结果非常吻合。样本外预测和交叉验证也表明,该模型的校准情况相当好。干预措施影响的模型预测存在很大的不确定性:由于将寻求健康的比率提高一倍、增加使用综合征管理方案的私人从业者比例以及对所有孕妇进行梅毒筛查,到 2020 年梅毒流行率预计将降低 43%(95%CI 3%至 77%)、9%(95%CI 1%至 19%)和 6%(95%CI 4%至 7%)。
本研究将针对拟合 HIV/AIDS 模型的不确定性分析技术扩展到针对其他 STI 流行率数据拟合的模型。不同的 STI 控制策略的相对有效性存在很大的不确定性。所提出的技术合理地估计了过去 STI 流行率水平的不确定性和未来 STI 流行率的预测。