Suppr超能文献

CEM-101 对具有明确大环内酯类耐药机制的肺炎链球菌和化脓性链球菌的体外活性。

In vitro activity of CEM-101 against Streptococcus pneumoniae and Streptococcus pyogenes with defined macrolide resistance mechanisms.

机构信息

Department of Pathology, Hershey Medical Center, P.O. Box 850, Hershey, PA 17033, USA.

出版信息

Antimicrob Agents Chemother. 2010 Jan;54(1):230-8. doi: 10.1128/AAC.01123-09. Epub 2009 Nov 2.

Abstract

CEM-101 had MIC ranges of 0.002 to 0.016 microg/ml against macrolide-susceptible pneumococci and 0.004 to 1 microg/ml against macrolide-resistant phenotypes. Only 3 strains with erm(B), with or without mef(A), had CEM-101 MICs of 1 microg/ml, and 218/221 strains had CEM-101 MICs of <or=0.5 microg/ml. CEM-101 MICs were as much as 4-fold lower than telithromycin MICs against all strains. For Streptococcus pyogenes, CEM-101 MICs ranged from 0.008 to 0.03 microg/ml against macrolide-susceptible strains and from 0.015 to 1 microg/ml against macrolide-resistant strains. Against erm(B) strains, erythromycin, azithromycin, and clarithromycin MICs were 32 to >64 microg/ml, while 17/19 strains had telithromycin MICs of 4 to 16 microg/ml; CEM-101 MICs were 0.015 to 1 microg/ml. By comparison, erm(A) and mef(A) strains had CEM-101 MICs of 0.015 to 0.5 microg/ml, clindamycin and telithromycin MICs of <or=1 microg/ml, and erythromycin, azithromycin, and clarithromycin MICs of 0.5 to >64 microg/ml. Pneumococcal multistep resistance studies showed that although CEM-101 yielded clones with higher MICs for all eight strains tested, seven of eight strains had clones with CEM-101 MICs that rose from 0.004 to 0.03 microg/ml (parental strains) to 0.06 to 0.5 microg/ml (resistant clones); for only one erm(B) mef(A) strain with a parental MIC of 1 microg/ml was there a resistant clone with a MIC of 32 microg/ml, with no detectable mutations in the L4, L22, or 23S rRNA sequence. Among two of five S. pyogenes strains tested, CEM-101 MICs rose from 0.03 to 0.25 microg/ml, and only for the one strain with erm(B) did CEM-101 MICs rise from 1 to 8 microg/ml, with no changes occurring in any macrolide resistance determinant. CEM-101 had low MICs as well as low potential for the selection of resistant mutants, independent of bacterial species or resistance phenotypes in pneumococci and S. pyogenes.

摘要

CEM-101 对大环内酯类敏感的肺炎球菌的 MIC 范围为 0.002 至 0.016μg/ml,对大环内酯类耐药表型的 MIC 范围为 0.004 至 1μg/ml。只有 3 株携带 erm(B),无论是否携带 mef(A),CEM-101 的 MIC 为 1μg/ml,218/221 株的 CEM-101 MIC<或=0.5μg/ml。CEM-101 的 MIC 比泰利霉素对所有菌株的 MIC 低 4 倍。对于化脓性链球菌,CEM-101 对大环内酯类敏感株的 MIC 范围为 0.008 至 0.03μg/ml,对大环内酯类耐药株的 MIC 范围为 0.015 至 1μg/ml。对于 erm(B)菌株,红霉素、阿奇霉素和克拉霉素的 MIC 为 32 至>64μg/ml,而 17/19 株的泰利霉素 MIC 为 4 至 16μg/ml;CEM-101 的 MIC 为 0.015 至 1μg/ml。相比之下,erm(A)和 mef(A)菌株的 CEM-101 MIC 为 0.015 至 0.5μg/ml,克林霉素和泰利霉素的 MIC<或=1μg/ml,红霉素、阿奇霉素和克拉霉素的 MIC 为 0.5 至>64μg/ml。肺炎球菌多步耐药研究表明,尽管 CEM-101 使所有 8 株测试菌株的克隆产生了更高的 MIC,但 8 株中的 7 株的 CEM-101 MIC 从 0.004 至 0.03μg/ml(亲本株)上升至 0.06 至 0.5μg/ml(耐药克隆);只有一株 erm(B) mef(A) 菌株的亲本 MIC 为 1μg/ml,其耐药克隆的 MIC 为 32μg/ml,L4、L22 或 23S rRNA 序列中没有检测到突变。在测试的 5 株化脓性链球菌中的 2 株中,CEM-101 的 MIC 从 0.03 至 0.25μg/ml 上升,只有 erm(B)的一株 CEM-101 的 MIC 从 1 上升至 8μg/ml,而大环内酯类耐药决定子没有发生任何变化。CEM-101 具有较低的 MIC 和较低的选择耐药突变体的潜力,这与肺炎球菌和化脓性链球菌的细菌种类或耐药表型无关。

相似文献

1
In vitro activity of CEM-101 against Streptococcus pneumoniae and Streptococcus pyogenes with defined macrolide resistance mechanisms.
Antimicrob Agents Chemother. 2010 Jan;54(1):230-8. doi: 10.1128/AAC.01123-09. Epub 2009 Nov 2.
6
CEM-101 activity against Gram-positive organisms.
Antimicrob Agents Chemother. 2010 May;54(5):2182-7. doi: 10.1128/AAC.01662-09. Epub 2010 Feb 22.
10

引用本文的文献

1
Molecular and phenotypic characterization of isolates in a Japanese tertiary care hospital.
Front Cell Infect Microbiol. 2024 Jul 22;14:1391879. doi: 10.3389/fcimb.2024.1391879. eCollection 2024.
2
New Resistance Mutations Linked to Decreased Susceptibility to Solithromycin in Streptococcus pneumoniae Revealed by Chemogenomic Screens.
Antimicrob Agents Chemother. 2023 Aug 17;67(8):e0039523. doi: 10.1128/aac.00395-23. Epub 2023 Jul 6.
3
The transcriptome of Balamuthia mandrillaris trophozoites for structure-guided drug design.
Sci Rep. 2021 Nov 4;11(1):21664. doi: 10.1038/s41598-021-99903-8.
8
9
Recent Advances in the Rational Design and Optimization of Antibacterial Agents.
Medchemcomm. 2016 Sep 1;7(9):1694-1715. doi: 10.1039/C6MD00232C. Epub 2016 Jul 7.
10
Efficacy of Solithromycin (CEM-101) for Experimental Otitis Media Caused by Nontypeable Haemophilus influenzae and Streptococcus pneumoniae.
Antimicrob Agents Chemother. 2016 Aug 22;60(9):5533-8. doi: 10.1128/AAC.00863-16. Print 2016 Sep.

本文引用的文献

2
In vitro activity of CEM-101, a new fluoroketolide antibiotic, against Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae.
Antimicrob Agents Chemother. 2010 Mar;54(3):1358-9. doi: 10.1128/AAC.01343-09. Epub 2009 Dec 28.
4
Comparative in vitro susceptibilities of human mycoplasmas and ureaplasmas to a new investigational ketolide, CEM-101.
Antimicrob Agents Chemother. 2009 May;53(5):2139-41. doi: 10.1128/AAC.00090-09. Epub 2009 Mar 2.
8
Capability of 11 antipneumococcal antibiotics to select for resistance by multistep and single-step methodologies.
Antimicrob Agents Chemother. 2007 Nov;51(11):4196-201. doi: 10.1128/AAC.00827-07. Epub 2007 Sep 17.
9
Streptococcus pneumoniae isolates resistant to telithromycin.
Antimicrob Agents Chemother. 2006 May;50(5):1855-8. doi: 10.1128/AAC.50.5.1855-1858.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验