Suppr超能文献

当全球定位系统定位成功率低于100%时估计栖息地选择情况。

Estimating habitat selection when GPS fix success is less than 100%.

作者信息

Nielson Ryan M, Manly Bryan F J, McDonald Lyman L, Sawyer Hall, McDonald Trent L

机构信息

Western EcoSystems Technology, Inc., 200 S. Second St., Suite B, Laramie, Wyoming 82070, USA.

出版信息

Ecology. 2009 Oct;90(10):2956-62. doi: 10.1890/08-1562.1.

Abstract

Inferences about habitat selection by animals derived from sequences of relocations obtained with global positioning system (GPS) collars can be influenced by GPS fix success. Environmental factors such as dense canopy cover or rugged terrain can reduce GPS fix success, making subsequent modeling problematic if fix success depends on the selected habitat. Ignoring failed fix attempts may affect estimates of model coefficients and lead to incorrect conclusions about habitat selection. Here, we present a habitat selection model that accounts for missing locations due to habitat-induced data losses, called a resource selection function (RSF) for GPS fix success. The model's formulation is similar to adjusting estimates of probability of occupancy when detection is less than 100% in patch occupancy sampling. We demonstrate use of the model with GPS data collected from an adult female mule deer (Odocoileus hemionus) and discuss how to analyze data from multiple animals. In the simulations presented, our habitat selection model was generally unbiased for GPS data sets missing up to 50% of the locations.

摘要

通过全球定位系统(GPS)项圈获得的动物重新安置序列推断其栖息地选择可能会受到GPS定位成功率的影响。诸如茂密树冠覆盖或崎岖地形等环境因素会降低GPS定位成功率,如果定位成功率取决于所选栖息地,那么后续建模就会出现问题。忽略失败的定位尝试可能会影响模型系数的估计,并导致关于栖息地选择的错误结论。在此,我们提出一种栖息地选择模型,该模型考虑了由于栖息地导致的数据丢失而缺失的位置,称为GPS定位成功率的资源选择函数(RSF)。该模型的公式类似于在斑块占用抽样中检测率低于100%时调整占用概率的估计。我们展示了该模型在从成年雌性骡鹿(Odocoileus hemionus)收集的GPS数据中的应用,并讨论了如何分析来自多只动物的数据。在给出的模拟中,我们的栖息地选择模型对于缺失高达50%位置的GPS数据集通常是无偏的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验