Suppr超能文献

颈连器保证了连续运行:DNA 动力蛋白杂交纳米机器研究。

Strain through the neck linker ensures processive runs: a DNA-kinesin hybrid nanomachine study.

机构信息

Department of Applied Physics, The University of Tokyo, Tokyo, Japan.

出版信息

EMBO J. 2010 Jan 6;29(1):93-106. doi: 10.1038/emboj.2009.319. Epub 2009 Nov 5.

Abstract

The motor protein kinesin has two heads and walks along microtubules processively using energy derived from ATP. However, how kinesin heads are coordinated to generate processive movement remains elusive. Here we created a hybrid nanomachine (DNA-kinesin) using DNA as the skeletal structure and kinesin as the functional module. Single molecule imaging of DNA-kinesin hybrid allowed us to evaluate the effects of both connect position of the heads (N, C-terminal or Mid position) and sub-nanometer changes in the distance between the two heads on motility. Our results show that although the native structure of kinesin is not essential for processive movement, it is the most efficient. Furthermore, forward bias by the power stroke of the neck linker, a 13-amino-acid chain positioned at the C-terminus of the head, and internal strain applied to the rear of the head through the neck linker are crucial for the processive movement. Results also show that the internal strain coordinates both heads to prevent simultaneous detachment from the microtubules. Thus, the inter-head coordination through the neck linker facilitates long-distance walking.

摘要

动力蛋白 kinesin 有两个头部,利用源自 ATP 的能量沿微管进行连续运动。然而,kinesin 头部如何协调以产生连续运动仍然难以捉摸。在这里,我们使用 DNA 作为骨架结构和 kinesin 作为功能模块创建了一种混合纳米机器(DNA-kinesin)。DNA-kinesin 杂交的单分子成像使我们能够评估头部连接位置(N、C 末端或中间位置)和两个头部之间距离的亚纳米变化对运动的影响。我们的结果表明,尽管 kinesin 的天然结构对于连续运动不是必需的,但它是最有效的。此外,通过颈部接头的动力冲程向前偏置、位于头部 C 末端的 13 个氨基酸链以及通过颈部接头施加到头部后部的内部应变对于连续运动至关重要。结果还表明,内部应变协调两个头部以防止同时从微管上脱离。因此,通过颈部接头进行的头部间协调促进了远距离行走。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/2808368/9b21cdf897a9/emboj2009319f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验