Suppr超能文献

驱动蛋白颈部区域在基于微管的持续运动中的作用。

Role of the kinesin neck region in processive microtubule-based motility.

作者信息

Romberg L, Pierce D W, Vale R D

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA.

出版信息

J Cell Biol. 1998 Mar 23;140(6):1407-16. doi: 10.1083/jcb.140.6.1407.

Abstract

Kinesin is a dimeric motor protein that can move along a microtubule for several microns without releasing (termed processive movement). The two motor domains of the dimer are thought to move in a coordinated, hand-over-hand manner. A region adjacent to kinesin's motor catalytic domain (the neck) contains a coiled coil that is sufficient for motor dimerization and has been proposed to play an essential role in processive movement. Recent models have suggested that the neck enables head-to-head communication by creating a stiff connection between the two motor domains, but also may unwind during the mechanochemical cycle to allow movement to new tubulin binding sites. To test these ideas, we mutated the neck coiled coil in a 560-amino acid (aa) dimeric kinesin construct fused to green fluorescent protein (GFP), and then assayed processivity using a fluorescence microscope that can visualize single kinesin-GFP molecules moving along a microtubule. Our results show that replacing the kinesin neck coiled coil with a 28-aa residue peptide sequence that forms a highly stable coiled coil does not greatly reduce the processivity of the motor. This result argues against models in which extensive unwinding of the coiled coil is essential for movement. Furthermore, we show that deleting the neck coiled coil decreases processivity 10-fold, but surprisingly does not abolish it. We also demonstrate that processivity is increased by threefold when the neck helix is elongated by seven residues. These results indicate that structural features of the neck coiled coil, although not essential for processivity, can tune the efficiency of single molecule motility.

摘要

驱动蛋白是一种二聚体运动蛋白,能够沿着微管移动数微米而不释放(称为持续性运动)。二聚体的两个运动结构域被认为是以协调的、交替式的方式移动。与驱动蛋白的运动催化结构域相邻的一个区域(颈部)包含一个卷曲螺旋,它足以使运动蛋白二聚化,并被认为在持续性运动中起关键作用。最近的模型表明,颈部通过在两个运动结构域之间建立刚性连接实现头对头通信,但在机械化学循环中也可能解旋,以允许移动到新的微管蛋白结合位点。为了验证这些想法,我们在与绿色荧光蛋白(GFP)融合的560个氨基酸(aa)的二聚体驱动蛋白构建体中突变了颈部卷曲螺旋,然后使用荧光显微镜检测持续性,该显微镜可以可视化单个驱动蛋白-GFP分子沿着微管移动。我们的结果表明,用形成高度稳定卷曲螺旋的28个氨基酸残基的肽序列取代驱动蛋白颈部卷曲螺旋,不会大幅降低运动蛋白的持续性。这一结果与卷曲螺旋广泛解旋对运动至关重要的模型相悖。此外,我们表明删除颈部卷曲螺旋会使持续性降低10倍,但令人惊讶的是并没有消除它。我们还证明,当颈部螺旋延长7个残基时,持续性增加了三倍。这些结果表明,颈部卷曲螺旋的结构特征虽然对持续性不是必需的,但可以调节单分子运动的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e5/2132664/836eaba1c8d0/JCB32990.f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验