Tomishige M, Vale R D
The Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA.
J Cell Biol. 2000 Nov 27;151(5):1081-92. doi: 10.1083/jcb.151.5.1081.
Conventional kinesin, a dimeric molecular motor, uses ATP-dependent conformational changes to move unidirectionally along a row of tubulin subunits on a microtubule. Two models have been advanced for the major structural change underlying kinesin motility: the first involves an unzippering/zippering of a small peptide (neck linker) from the motor catalytic core and the second proposes an unwinding/rewinding of the adjacent coiled-coil (neck coiled-coil). Here, we have tested these models using disulfide cross-linking of cysteines engineered into recombinant kinesin motors. When the neck linker motion was prevented by cross-linking, kinesin ceased unidirectional movement and only showed brief one-dimensional diffusion along microtubules. Motility fully recovered upon adding reducing agents to reverse the cross-link. When the neck linker motion was partially restrained, single kinesin motors showed biased diffusion towards the microtubule plus end but could not move effectively against a load imposed by an optical trap. Thus, partial movement of the neck linker suffices for directionality but not for normal processivity or force generation. In contrast, preventing neck coiled-coil unwinding by disulfide cross-linking had relatively little effect on motor activity, although the average run length of single kinesin molecules decreased by 30-50%. These studies indicate that conformational changes in the neck linker, not in the neck coiled-coil, drive processive movement by the kinesin motor.
传统驱动蛋白是一种二聚体分子马达,它利用ATP依赖的构象变化,沿着微管上的一排微管蛋白亚基单向移动。关于驱动蛋白运动背后的主要结构变化,已经提出了两种模型:第一种涉及一个小肽(颈部连接体)从马达催化核心的解开/重新连接,第二种模型则提出相邻的卷曲螺旋(颈部卷曲螺旋)的解旋/重新缠绕。在这里,我们通过对工程改造到重组驱动蛋白马达中的半胱氨酸进行二硫键交联,对这些模型进行了测试。当通过交联阻止颈部连接体运动时,驱动蛋白停止单向运动,仅沿微管表现出短暂的一维扩散。加入还原剂以逆转交联后,运动能力完全恢复。当颈部连接体运动受到部分限制时,单个驱动蛋白马达向微管正端表现出偏向扩散,但无法有效地克服光镊施加的负载而移动。因此,颈部连接体的部分移动足以产生方向性,但不足以实现正常的持续性或力的产生。相比之下,通过二硫键交联阻止颈部卷曲螺旋的解旋对马达活性的影响相对较小,尽管单个驱动蛋白分子的平均运行长度减少了30%-50%。这些研究表明,驱动蛋白马达的持续性运动是由颈部连接体而非颈部卷曲螺旋的构象变化驱动的。