Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina.
Proteins. 2010 Mar;78(4):962-70. doi: 10.1002/prot.22620.
Truncated hemoglobins (trHbs) are heme proteins present in bacteria, unicellular eukaryotes, and higher plants. Their tertiary structure consists in a 2-over-2 helical sandwich, which display typically an inner tunnel/cavity system for ligand migration and/or storage. The microorganism Bacillus subtilis contains a peculiar trHb, which does not show an evident tunnel/cavity system connecting the protein active site with the solvent, and exhibits anyway a very high oxygen association rate. Moreover, resonant Raman results of CO bound protein, showed that a complex hydrogen bond network exists in the distal cavity, making it difficult to assign unambiguously the residues involved in the stabilization of the bound ligand. To understand these experimental results with atomistic detail, we performed classical molecular dynamics simulations of the oxy, carboxy, and deoxy proteins. The free energy profiles for ligand migration suggest that there is a key residue, GlnE11, that presents an alternate conformation, in which a wide ligand migration tunnel is formed, consistently with the kinetic data. This tunnel is topologically related to the one found in group I trHbs. On the other hand, the results for the CO and O(2) bound protein show that GlnE11 is directly involved in the stabilization of the cordinated ligand, playing a similar role as TyrB10 and TrpG8 in other trHbs. Our results not only reconcile the structural data with the kinetic information, but also provide additional insight into the general behaviour of trHbs. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
截短血红蛋白(trHbs)存在于细菌、单细胞真核生物和高等植物中。它们的三级结构由 2 个-over-2 螺旋夹心组成,通常显示出一个内部隧道/腔系统,用于配体迁移和/或存储。微生物枯草芽孢杆菌含有一种特殊的 trHb,它没有明显的隧道/腔系统将蛋白质活性位点与溶剂连接,但仍表现出非常高的氧结合速率。此外,CO 结合蛋白的共振拉曼结果表明,在远端腔中存在复杂的氢键网络,使得难以明确分配参与稳定结合配体的残基。为了用原子细节理解这些实验结果,我们对氧合、羧基和脱氧蛋白进行了经典分子动力学模拟。配体迁移的自由能曲线表明,有一个关键的残基 GlnE11,它呈现出交替的构象,形成了一个宽阔的配体迁移隧道,与动力学数据一致。该隧道在拓扑上与 I 组 trHbs 中的隧道相关。另一方面,CO 和 O2 结合蛋白的结果表明,GlnE11 直接参与配位配体的稳定,在其他 trHbs 中起着类似于 TyrB10 和 TrpG8 的作用。我们的结果不仅协调了结构数据与动力学信息,还为 trHbs 的一般行为提供了额外的见解。蛋白质 2010。(c)2009 Wiley-Liss,Inc.