Suppr超能文献

血脂谱成分与缺血性中风风险:北曼哈顿研究(NOMAS)

Lipid profile components and risk of ischemic stroke: the Northern Manhattan Study (NOMAS).

作者信息

Willey Joshua Z, Xu Qiang, Boden-Albala Bernadette, Paik Myunghee C, Moon Yeseon Park, Sacco Ralph L, Elkind Mitchell S V

机构信息

Department of Neurology, College of Physicians and Surgeons, Joseph P. Mailman School of Public Health, Columbia University, and the Columbia University Medical Center of New York Presbyterian Hospital, New York, NY 10032, USA.

出版信息

Arch Neurol. 2009 Nov;66(11):1400-6. doi: 10.1001/archneurol.2009.210.

Abstract

OBJECTIVE

To explore the relationship between lipid profile components and incident ischemic stroke in a stroke-free prospective cohort.

DESIGN

Population-based prospective cohort study.

SETTING

Northern Manhattan, New York.

PATIENTS

Stroke-free community residents. Intervention As part of the Northern Manhattan Study, baseline fasting blood samples were collected on stroke-free community residents followed up for a mean of 7.5 years.

MAIN OUTCOME MEASURES

Cox proportional hazard models were used to calculate hazard ratios and 95% confidence intervals for lipid profile components and ischemic stroke after adjusting for demographic and risk factors. In secondary analyses, we used repeated lipid measures over 5 years from a 10% sample of the population to calculate the change per year of each of the lipid parameters and to impute time-dependent lipid parameters for the full cohort.

RESULTS

After excluding those with a history of myocardial infarction, 2940 participants were available for analysis. Baseline high-density lipoprotein cholesterol, triglyceride, and total cholesterol levels were not associated with risk of ischemic stroke. Low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol levels were associated with a paradoxical reduction in risk of stroke. There was an interaction with use of cholesterol-lowering medication on follow-up, such that LDL-C level was only associated with a reduction in stroke risk among those taking medications. An LDL-C level greater than 130 mg/dL as a time-dependent covariate showed an increased risk of ischemic stroke (adjusted hazard ratio, 3.81; 95% confidence interval, 1.53-9.51).

CONCLUSIONS

Baseline lipid panel components were not associated with an increased stroke risk in this cohort. Treatment with cholesterol-lowering medications and changes in LDL-C level over time may have attenuated the risk in this population, and lipid measurements at several points may be a better marker of stroke risk.

摘要

目的

在无卒中的前瞻性队列中探讨血脂谱成分与缺血性卒中发病之间的关系。

设计

基于人群的前瞻性队列研究。

地点

纽约曼哈顿北部。

患者

无卒中的社区居民。干预措施作为曼哈顿北部研究的一部分,对无卒中的社区居民采集基线空腹血样,并进行平均7.5年的随访。

主要观察指标

采用Cox比例风险模型,在调整人口统计学和风险因素后,计算血脂谱成分与缺血性卒中的风险比及95%置信区间。在二次分析中,我们使用从10%的人群样本中获取的5年期间重复血脂测量数据,计算每个血脂参数的年变化量,并为整个队列推算随时间变化的血脂参数。

结果

排除有心肌梗死病史者后,2940名参与者可供分析。基线高密度脂蛋白胆固醇、甘油三酯和总胆固醇水平与缺血性卒中风险无关。低密度脂蛋白胆固醇(LDL-C)和非高密度脂蛋白胆固醇水平与卒中风险呈反常降低相关。随访时与使用降胆固醇药物存在交互作用,即仅在服用药物者中LDL-C水平与卒中风险降低相关。将LDL-C水平大于130 mg/dL作为随时间变化的协变量时,缺血性卒中风险增加(调整后风险比为3.81;95%置信区间为1.53 - 9.51)。

结论

该队列中基线血脂指标成分与卒中风险增加无关。降胆固醇药物治疗及LDL-C水平随时间的变化可能降低了该人群的风险,且多次血脂测量可能是更好的卒中风险标志物。

相似文献

3
Lipid levels and the risk of ischemic stroke in women.女性的血脂水平与缺血性中风风险
Neurology. 2007 Feb 20;68(8):556-62. doi: 10.1212/01.wnl.0000254472.41810.0d.
8
What is the association of lipid levels and incident stroke?血脂水平与新发中风之间有什么关联?
Int J Cardiol. 2016 Oct 1;220:890-4. doi: 10.1016/j.ijcard.2016.06.091. Epub 2016 Jun 23.

引用本文的文献

本文引用的文献

2
Statin therapy for stroke prevention.用于预防中风的他汀类药物治疗。
Stroke. 2008 Mar;39(3):1042-8. doi: 10.1161/STROKEAHA.107.501361. Epub 2008 Feb 7.
3
Association of serum lipid indices with large artery atherosclerotic stroke.血清脂质指标与大动脉粥样硬化性卒中的关联
Neurology. 2008 Mar 11;70(11):841-7. doi: 10.1212/01.wnl.0000294323.48661.a9. Epub 2007 Dec 26.
7
Lipid levels and the risk of ischemic stroke in women.女性的血脂水平与缺血性中风风险
Neurology. 2007 Feb 20;68(8):556-62. doi: 10.1212/01.wnl.0000254472.41810.0d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验