Suppr超能文献

从基因组异质性推断肿瘤进展。

Inferring tumor progression from genomic heterogeneity.

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

出版信息

Genome Res. 2010 Jan;20(1):68-80. doi: 10.1101/gr.099622.109. Epub 2009 Nov 10.

Abstract

Cancer progression in humans is difficult to infer because we do not routinely sample patients at multiple stages of their disease. However, heterogeneous breast tumors provide a unique opportunity to study human tumor progression because they still contain evidence of early and intermediate subpopulations in the form of the phylogenetic relationships. We have developed a method we call Sector-Ploidy-Profiling (SPP) to study the clonal composition of breast tumors. SPP involves macro-dissecting tumors, flow-sorting genomic subpopulations by DNA content, and profiling genomes using comparative genomic hybridization (CGH). Breast carcinomas display two classes of genomic structural variation: (1) monogenomic and (2) polygenomic. Monogenomic tumors appear to contain a single major clonal subpopulation with a highly stable chromosome structure. Polygenomic tumors contain multiple clonal tumor subpopulations, which may occupy the same sectors, or separate anatomic locations. In polygenomic tumors, we show that heterogeneity can be ascribed to a few clonal subpopulations, rather than a series of gradual intermediates. By comparing multiple subpopulations from different anatomic locations, we have inferred pathways of cancer progression and the organization of tumor growth.

摘要

人类癌症的进展难以推断,因为我们通常不会在疾病的多个阶段对患者进行常规采样。然而,异质性乳腺肿瘤为研究人类肿瘤进展提供了一个独特的机会,因为它们仍然以进化关系的形式为早期和中期亚群提供了证据。我们开发了一种称为扇区倍性分析(Sector-Ploidy-Profiling,SPP)的方法来研究乳腺肿瘤的克隆组成。SPP 涉及宏观解剖肿瘤,通过 DNA 含量对基因组亚群进行流式分选,以及使用比较基因组杂交(CGH)对基因组进行分析。乳腺癌显示出两类基因组结构变异:(1)单倍体和(2)多倍体。单倍体肿瘤似乎包含一个具有高度稳定染色体结构的单一主要克隆亚群。多倍体肿瘤包含多个克隆肿瘤亚群,这些亚群可能占据相同的扇区或不同的解剖位置。在多倍体肿瘤中,我们表明异质性可归因于少数几个克隆亚群,而不是一系列渐进的中间产物。通过比较来自不同解剖位置的多个亚群,我们推断了癌症进展的途径和肿瘤生长的组织方式。

相似文献

1
Inferring tumor progression from genomic heterogeneity.从基因组异质性推断肿瘤进展。
Genome Res. 2010 Jan;20(1):68-80. doi: 10.1101/gr.099622.109. Epub 2009 Nov 10.
2
Tumour evolution inferred by single-cell sequencing.单细胞测序推断肿瘤进化。
Nature. 2011 Apr 7;472(7341):90-4. doi: 10.1038/nature09807. Epub 2011 Mar 13.

引用本文的文献

6
Resolving tumor evolution: a phylogenetic approach.解析肿瘤进化:一种系统发育学方法。
J Natl Cancer Cent. 2024 Mar 21;4(2):97-106. doi: 10.1016/j.jncc.2024.03.001. eCollection 2024 Jun.
10
DrugMap: A quantitative pan-cancer analysis of cysteine ligandability.DrugMap:半胱氨酸配体能力的泛癌定量分析。
Cell. 2024 May 9;187(10):2536-2556.e30. doi: 10.1016/j.cell.2024.03.027. Epub 2024 Apr 22.

本文引用的文献

2
The cancer genome.癌症基因组
Nature. 2009 Apr 9;458(7239):719-24. doi: 10.1038/nature07943.
7
Understanding the molecular basis of histologic grade.了解组织学分级的分子基础。
Pathobiology. 2008;75(2):104-11. doi: 10.1159/000123848. Epub 2008 Jun 10.
10
Integrated profiling of basal and luminal breast cancers.基底样和管腔型乳腺癌的综合分析
Cancer Res. 2007 Dec 15;67(24):11565-75. doi: 10.1158/0008-5472.CAN-07-2536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验