Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
NEC Laboratories America, Princeton, New Jersey.
Clin Cancer Res. 2024 Aug 15;30(16):3520-3532. doi: 10.1158/1078-0432.CCR-23-3932.
We aim to improve the prediction of response or resistance to immunotherapies in patients with melanoma. This goal is based on the hypothesis that current gene signatures predicting immunotherapy outcomes show only modest accuracy due to the lack of spatial information about cellular functions and molecular processes within tumors and their microenvironment.
We collected gene expression data spatially from three cellular compartments defined by CD68+ macrophages, CD45+ leukocytes, and S100B+ tumor cells in 55 immunotherapy-treated melanoma specimens using Digital Spatial Profiling-Whole Transcriptome Atlas. We developed a computational pipeline to discover compartment-specific gene signatures and determine if adding spatial information can improve patient stratification.
We achieved robust performance of compartment-specific signatures in predicting the outcome of immune checkpoint inhibitors in the discovery cohort. Of the three signatures, the S100B signature showed the best performance in the validation cohort (N = 45). We also compared our compartment-specific signatures with published bulk signatures and found the S100B tumor spatial signature outperformed previous signatures. Within the eight-gene S100B signature, five genes (PSMB8, TAX1BP3, NOTCH3, LCP2, and NQO1) with positive coefficients predict the response, and three genes (KMT2C, OVCA2, and MGRN1) with negative coefficients predict the resistance to treatment.
We conclude that the spatially defined compartment signatures utilize tumor and tumor microenvironment-specific information, leading to more accurate prediction of treatment outcome, and thus merit prospective clinical assessment.
我们旨在提高黑色素瘤患者对免疫疗法反应或耐药性的预测能力。这一目标基于以下假设:由于缺乏肿瘤及其微环境中细胞功能和分子过程的空间信息,当前预测免疫治疗结果的基因特征的准确性仅为中等。
我们使用数字空间分析-全转录组图谱,从三个由 CD68+巨噬细胞、CD45+白细胞和 S100B+肿瘤细胞定义的细胞区室中,从 55 个接受免疫治疗的黑色素瘤标本中收集空间基因表达数据。我们开发了一种计算管道来发现区室特异性基因特征,并确定是否添加空间信息可以改善患者分层。
我们在发现队列中实现了区室特异性特征在预测免疫检查点抑制剂结果方面的稳健表现。在这三个特征中,S100B 特征在验证队列(N=45)中表现最好。我们还将我们的区室特异性特征与已发表的批量特征进行了比较,发现 S100B 肿瘤空间特征优于以前的特征。在由八个基因组成的 S100B 特征中,五个具有正系数的基因(PSMB8、TAX1BP3、NOTCH3、LCP2 和 NQO1)预测反应,而三个具有负系数的基因(KMT2C、OVCA2 和 MGRN1)预测耐药性。
我们得出的结论是,空间定义的区室特征利用了肿瘤和肿瘤微环境的特异性信息,从而更准确地预测治疗结果,因此值得进行前瞻性临床评估。