Suppr超能文献

贝叶斯 PET 图像重建,纳入解剖-功能联合熵。

Bayesian PET image reconstruction incorporating anato-functional joint entropy.

机构信息

Department of Radiology, The Johns Hopkins University, Baltimore, MD 21287, USA.

出版信息

Phys Med Biol. 2009 Dec 7;54(23):7063-75. doi: 10.1088/0031-9155/54/23/002. Epub 2009 Nov 11.

Abstract

We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realistically simulated PET and MR human brain phantoms, the quantitative performance of the proposed algorithm was investigated. Incorporation of the anatomic information via this technique, after parameter optimization, was seen to dramatically improve the noise versus bias tradeoff in every region of interest, compared to the result from using conventional MAP reconstruction. In particular, hot lesions in the FDG PET image, which had no anatomical correspondence in the MR image, also had improved contrast versus noise tradeoff.Corrections were made to figures 3, 4 and 6, and to the second paragraph of section 3.1 on 13 November 2009. The corrected electronic version is identical to the print version.

摘要

我们开发了一种基于最大后验 (MAP) 的重建方法,用于将磁共振 (MR) 图像信息纳入正电子发射断层扫描 (PET) 图像重建中,将 PET 和 MR 图像特征之间的联合熵作为正则化约束。我们使用非参数方法来估计 PET 和 MR 图像的联合概率密度。使用真实模拟的 PET 和 MR 人脑体模,研究了所提出算法的定量性能。与使用传统 MAP 重建的结果相比,通过该技术纳入解剖学信息(经过参数优化),在每个感兴趣区域都显著改善了噪声与偏差之间的权衡。特别是,在 FDG PET 图像中没有解剖对应物的热点病变,其对比度与噪声之间的权衡也得到了改善。对图 3、4 和 6 进行了修正,并于 2009 年 11 月 13 日修正了第 3.1 节第二段的内容。修正后的电子版与印刷版完全一致。

相似文献

1
Bayesian PET image reconstruction incorporating anato-functional joint entropy.贝叶斯 PET 图像重建,纳入解剖-功能联合熵。
Phys Med Biol. 2009 Dec 7;54(23):7063-75. doi: 10.1088/0031-9155/54/23/002. Epub 2009 Nov 11.
6
MR-guided joint reconstruction of activity and attenuation in brain PET-MR.MR 引导的脑 PET-MR 活动和衰减联合重建。
Neuroimage. 2017 Nov 15;162:276-288. doi: 10.1016/j.neuroimage.2017.09.006. Epub 2017 Sep 14.

引用本文的文献

3
Effect of PET-MR Inconsistency in the Kernel Image Reconstruction Method.PET-MR不一致性在核图像重建方法中的影响。
IEEE Trans Radiat Plasma Med Sci. 2019 Jul;3(4):400-409. doi: 10.1109/trpms.2018.2884176. Epub 2018 Nov 30.
5
PET image denoising using unsupervised deep learning.使用无监督深度学习进行 PET 图像去噪。
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2780-2789. doi: 10.1007/s00259-019-04468-4. Epub 2019 Aug 29.
8
PET Image Reconstruction Using Deep Image Prior.基于深度图像先验的 PET 图像重建。
IEEE Trans Med Imaging. 2019 Jul;38(7):1655-1665. doi: 10.1109/TMI.2018.2888491. Epub 2018 Dec 19.
9
Spatially-Compact MR-Guided Kernel EM for PET Image Reconstruction.用于PET图像重建的空间紧凑式磁共振引导内核期望最大化算法
IEEE Trans Radiat Plasma Med Sci. 2018 Sep;2(5):470-482. doi: 10.1109/TRPMS.2018.2844559. Epub 2018 Jun 6.
10
Iterative PET Image Reconstruction Using Convolutional Neural Network Representation.基于卷积神经网络表示的迭代 PET 图像重建。
IEEE Trans Med Imaging. 2019 Mar;38(3):675-685. doi: 10.1109/TMI.2018.2869871. Epub 2018 Sep 12.

本文引用的文献

7
Noise properties of the EM algorithm: I. Theory.期望最大化(EM)算法的噪声特性:I. 理论
Phys Med Biol. 1994 May;39(5):833-46. doi: 10.1088/0031-9155/39/5/004.
9
Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels.
Phys Med Biol. 2002 Jan 7;47(1):1-20. doi: 10.1088/0031-9155/47/1/301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验