Suppr超能文献

使用信念核的正电子发射断层扫描图像重建的有序子集期望最大化算法

Ordered subset expectation maximization algorithm for positron emission tomographic image reconstruction using belief kernels.

作者信息

Zhu Yang-Ming

机构信息

Philips HealthTech, Advanced Molecular Imaging, Highland Heights, Ohio, United States.

出版信息

J Med Imaging (Bellingham). 2018 Oct;5(4):044005. doi: 10.1117/1.JMI.5.4.044005. Epub 2018 Nov 21.

Abstract

The aim of this study is to investigate the benefits of incorporating prior information in list mode, time-of-flight (TOF) positron emission tomography (PET) image reconstruction using the ordered subset expectation maximization (OSEM) algorithm. This investigation consists of an IEC phantom study and a patient study. For the image under reconstruction, the activity profile along a line of response is treated as and is combined with the TOF measurement to define a belief kernel used for forward and backward projections during the OSEM image reconstruction. Activity profiles are smoothed and combined with the TOF kernels to control the adverse impact of noise, and different levels of smoothness are attempted. The standard TOF OSEM reconstruction is used as a baseline for comparison. Image quality is assessed using a combination of visual assessment and quantitative measurement including contrast recovery coefficients (CRC) and background variability. On the IEC phantom study, the reconstruction using belief kernels converges faster and the reconstructed images are more appealing. The CRCs for all sizes of regions of interest on images reconstructed with belief kernels are higher than those of the baseline. The background variability, measured as a coefficient of variation, is generally lower for the images reconstructed using belief kernels. Similar observations occur on the patient study. Particularly, the images reconstructed using belief kernels have better defined lesions, improved contrast, and reduced background noise. OSEM PET image reconstruction using belief kernels that combine the information from prior images and TOF measurements seems promising and worth further investigation.

摘要

本研究的目的是探讨在使用有序子集期望最大化(OSEM)算法的列表模式飞行时间(TOF)正电子发射断层扫描(PET)图像重建中纳入先验信息的益处。这项研究包括一项国际电工委员会(IEC)体模研究和一项患者研究。对于正在重建的图像,将沿响应线的活度分布视为并与TOF测量值相结合,以定义一个用于OSEM图像重建期间前向和后向投影的置信核。对活度分布进行平滑处理并与TOF核相结合,以控制噪声的不利影响,并尝试了不同程度的平滑处理。标准的TOF OSEM重建用作比较的基线。使用视觉评估和包括对比度恢复系数(CRC)和背景变异性在内的定量测量相结合的方法来评估图像质量。在IEC体模研究中,使用置信核的重建收敛更快,重建图像更具吸引力。使用置信核重建的图像上所有大小感兴趣区域的CRC均高于基线值。以变异系数衡量的背景变异性,对于使用置信核重建的图像通常更低。在患者研究中也有类似的观察结果。特别是,使用置信核重建的图像病变定义更清晰,对比度提高,背景噪声降低。使用结合了来自先前图像和TOF测量信息的置信核进行OSEM PET图像重建似乎很有前景,值得进一步研究。

相似文献

本文引用的文献

1
Recent developments in time-of-flight PET.近年来飞行时间 PET 的发展。
EJNMMI Phys. 2016 Dec;3(1):3. doi: 10.1186/s40658-016-0138-3. Epub 2016 Feb 16.
2
Optimally stabilized PET image denoising using trilateral filtering.使用三边滤波实现最优稳定的PET图像去噪
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):130-7. doi: 10.1007/978-3-319-10404-1_17.
3
Non-local means denoising of dynamic PET images.动态PET图像的非局部均值去噪
PLoS One. 2013 Dec 5;8(12):e81390. doi: 10.1371/journal.pone.0081390. eCollection 2013.
5
Guided image filtering.引导图像滤波。
IEEE Trans Pattern Anal Mach Intell. 2013 Jun;35(6):1397-409. doi: 10.1109/TPAMI.2012.213.
7
Bayesian PET image reconstruction incorporating anato-functional joint entropy.贝叶斯 PET 图像重建,纳入解剖-功能联合熵。
Phys Med Biol. 2009 Dec 7;54(23):7063-75. doi: 10.1088/0031-9155/54/23/002. Epub 2009 Nov 11.
8
Iterative reconstruction techniques in emission computed tomography.发射计算机断层成像中的迭代重建技术
Phys Med Biol. 2006 Aug 7;51(15):R541-78. doi: 10.1088/0031-9155/51/15/R01. Epub 2006 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验