Suppr超能文献

从一维细胞动力学的离散模型到连续模型。

From a discrete to a continuum model of cell dynamics in one dimension.

作者信息

Murray Philip J, Edwards Carina M, Tindall Marcus J, Maini Philip K

机构信息

Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031912. doi: 10.1103/PhysRevE.80.031912. Epub 2009 Sep 23.

Abstract

Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.

摘要

多尺度建模正成为数学生物学中的关键挑战之一。然而,近年来用于描述细胞群体的建模方法数量迅速增加,引发了一些有趣的问题。例如,在细胞尺度上,如何在给定背景下确定合适的离散细胞水平模型?此外,在连续尺度模型推导中使用的许多唯象假设如何与单个细胞行为相关?为了开始解决这些问题,我们考虑一个基于离散一维细胞的模型,其中假设细胞通过线性弹簧相互作用。从离散运动方程出发,得到了连续的劳斯 [P. E. 劳斯,《化学物理杂志》21, 1272 (1953)] 模型。这种形式主义很容易定义细胞数密度,并由此推导出一个非线性“快速”扩散方程。连续模型和离散模型之间显示出极好的一致性。随后,通过纳入细胞分裂,我们证明了推导得到的非线性扩散模型对于纳入更现实的生物学细节具有鲁棒性。在刚性弹簧的极限情况下,即细胞可被视为不可压缩时,我们表明细胞速度可以直接与细胞产生相关。文献中经常做出这种假设,但我们的推导对其有效性设定了限制。最后,将该模型与最近为另一个基于离散细胞的模型推导的类似形式的模型进行比较,并展示了如何根据各自离散模型中关于细胞行为的基本假设来理解不同的扩散系数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验