Suppr超能文献

用于电力系统稳态安全识别的量子偶然性分析

Quantum contingency analysis for power system steady-state security identification.

作者信息

Feng Fei, Zhou Yifan, Bragin Mikhail A, Shamash Yacov A, Zhang Peng

机构信息

Department of Electrical Engineering, SUNY Maritime College, Bronx, 10465, NY, USA.

Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, 11794, NY, USA.

出版信息

Sci Rep. 2025 Apr 30;15(1):15148. doi: 10.1038/s41598-025-98776-5.

Abstract

Unprecedented extreme climate events cause devastating infrastructure outages within power systems. Comprehensive outage identification is essential for the identification of critical components to ensure the uninterrupted power supply in a secure manner to withstand extreme weather events. Accurate outage identification, however, requires simulations of a large number of outage scenarios necessitating highly scalable computations thus challenging classical computing paradigms. Quantum computing provides a promising resolution by exploiting exponential scalability achieved through superposition and entanglement of voltage states. This paper devises a quantum contingency analysis (QCA) method to identify outage scenarios on Noisy Intermediate-Scale Quantum (NISQ) devices. Advanced quantum circuits incorporating Pauli-twirling, dynamic decoupling, and matrix-free measurement are designed to mitigate hardware-induced errors. A preconditioned hybrid method is devised to alleviate the computation burden of parameter optimization of quantum gates. Case studies identify line and generation outages via QCA in typical power systems. Our research underscores that quantum computing exhibits exponential scalability in identifying power grid outages and critical components.

摘要

前所未有的极端气候事件导致电力系统内的基础设施遭受毁灭性停电。全面的停电识别对于确定关键组件至关重要,以确保以安全的方式不间断供电,从而抵御极端天气事件。然而,准确的停电识别需要模拟大量停电场景,这需要高度可扩展的计算,因此对经典计算范式构成挑战。量子计算通过利用电压状态的叠加和纠缠实现的指数级可扩展性提供了一个有前景的解决方案。本文设计了一种量子故障分析(QCA)方法,用于在有噪声的中等规模量子(NISQ)设备上识别停电场景。设计了结合泡利旋转、动态解耦和无矩阵测量的先进量子电路,以减轻硬件引起的误差。设计了一种预处理混合方法,以减轻量子门参数优化的计算负担。案例研究通过典型电力系统中的QCA识别线路和发电停电。我们的研究强调,量子计算在识别电网停电和关键组件方面具有指数级可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/813b/12044018/9ad06d48c551/41598_2025_98776_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验