Suppr超能文献

Role of proline residues in the structure and function of a membrane transport protein.

作者信息

Consler T G, Tsolas O, Kaback H R

机构信息

Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1570.

出版信息

Biochemistry. 1991 Feb 5;30(5):1291-8. doi: 10.1021/bi00219a019.

Abstract

By use of site-directed mutagenesis, each prolyl residue in the lac permease of Escherichia coli at positions 28 (putative helix I), 31 (helix I), 61 (helix II), 89 (helix III), 97 (helix III), 123 (helix IV), 192 (putative hydrophilic region 7), 220 (helix VII), 280 (helix VIII), and 327 [helix X; Lolkema, J. S., et al. (1988) Biochemistry 27, 8307] was systematically replaced with Gly, Ala, or Leu or deleted by truncation of the C-terminus [i.e., Pro403 and Pro405; Roepe, P.D., et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 3992]. Replacements were chosen on the basis of side-chain helical propensity: Gly, like Pro, is thought to be a "helix breaker", while Ala and Leu are "helix makers". With the exception of Pro28, each prolyl residue can be replaced with Gly or Ala, and Pro403 and -405 can be deleted with the C-terminal tail, and significant lac permease activity is retained. In contrast, when Pro28 is replaced with Gly, Ala, or Ser, lactose transport is abolished, but permease with Ser28 binds p-nitrophenyl alpha-D-galactopyranoside and catalyzes active transport of beta-galactopyranosyl-1-thio-beta-D- galactopyranoside. Replacement of Pro28, -31, -123, -280, or -327 with Leu abolishes lactose transport, while replacement of Pro61, -89, -97, or -220 with Leu has relatively minor effects. None of the alterations in permease activity is due to inability of the mutant proteins to insert into the membrane or to diminished lifetimes after insertion, since the concentration of each mutant permease in the membrane is comparable to that of wild-type permease as judged by immunological analyses.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验