From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and.
the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 OWA, United Kingdom.
J Biol Chem. 2018 Nov 2;293(44):17267-17277. doi: 10.1074/jbc.RA118.004461. Epub 2018 Sep 20.
is an opportunistic human pathogen that causes nosocomial infections. The outer membrane contains specific porins that enable substrate uptake, with the outer membrane protein OprG facilitating transport of small, uncharged amino acids. However, the pore size of an eight-stranded β-barrel monomer of OprG is too narrow to accommodate even the smallest transported amino acid, glycine, raising the question of how OprG facilitates amino acid uptake. Pro-92 of OprG is critically important for amino acid transport, with a P92A substitution inhibiting transport and the NMR structure of this variant revealing that this substitution produces structural changes in the barrel rim and restricts loop motions. OprG may assemble into oligomers in the outer membrane (OM) whose subunit interfaces could form a transport channel. Here, we explored the contributions of the oligomeric state and the extracellular loops to OprG's function. Using chemical cross-linking to determine the oligomeric structures of both WT and P92A OprG in native outer membranes and atomic force microscopy, and single-molecule fluorescence of the purified proteins reconstituted into lipid bilayers, we found that both protein variants form oligomers, supporting the notion that subunit interfaces in the oligomer could provide a pathway for amino acid transport. Furthermore, performing transport assays with loop-deleted OprG variants, we found that these variants also can transport small amino acids, indicating that the loops are not solely responsible for substrate transport. We propose that OprG functions as an oligomer and that conformational changes in the barrel-loop region might be crucial for its activity.
铜绿假单胞菌是一种机会性人病原体,可引起医院获得性感染。外膜含有特定的孔道蛋白,使底物摄取成为可能,其中外膜蛋白 OprG 促进小的、不带电荷的氨基酸的转运。然而,OprG 的八链β-桶单体的孔径太窄,甚至无法容纳最小的转运氨基酸甘氨酸,这就提出了 OprG 如何促进氨基酸摄取的问题。OprG 的 Pro-92 对氨基酸转运至关重要,P92A 取代会抑制转运,该变体的 NMR 结构表明,这种取代会导致桶边缘的结构变化,并限制环运动。OprG 可能在外膜(OM)中组装成寡聚体,其亚基界面可能形成一个运输通道。在这里,我们探讨了寡聚状态和细胞外环对 OprG 功能的贡献。使用化学交联来确定野生型和 P92A OprG 在天然外膜中的寡聚结构,以及原子力显微镜和纯化蛋白在脂质双层中再构成的单分子荧光,我们发现这两种蛋白质变体都形成寡聚体,支持亚基界面在寡聚体中可能提供氨基酸运输途径的观点。此外,通过对环缺失的 OprG 变体进行转运实验,我们发现这些变体也可以转运小的氨基酸,表明环不是底物转运的唯一原因。我们提出 OprG 作为寡聚体发挥作用,并且桶环区域的构象变化可能对其活性至关重要。