Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Sensors (Basel). 2024 Aug 1;24(15):4983. doi: 10.3390/s24154983.
Quantitative mobility analysis using wearable sensors, while promising as a diagnostic tool for Parkinson's disease (PD), is not commonly applied in clinical settings. Major obstacles include uncertainty regarding the best protocol for instrumented mobility testing and subsequent data processing, as well as the added workload and complexity of this multi-step process. To simplify sensor-based mobility testing in diagnosing PD, we analyzed data from 262 PD participants and 50 controls performing several motor tasks wearing a sensor on their lower back containing a triaxial accelerometer and a triaxial gyroscope. Using ensembles of heterogeneous machine learning models incorporating a range of classifiers trained on a set of sensor features, we show that our models effectively differentiate between participants with PD and controls, both for mixed-stage PD (92.6% accuracy) and a group selected for mild PD only (89.4% accuracy). Omitting algorithmic segmentation of complex mobility tasks decreased the diagnostic accuracy of our models, as did the inclusion of kinesiological features. Feature importance analysis revealed that Timed Up and Go (TUG) tasks to contribute the highest-yield predictive features, with only minor decreases in accuracy for models based on cognitive TUG as a single mobility task. Our machine learning approach facilitates major simplification of instrumented mobility testing without compromising predictive performance.
使用可穿戴传感器进行定量运动分析,有望成为帕金森病 (PD) 的诊断工具,但在临床环境中并未得到广泛应用。主要障碍包括不确定最佳的仪器化运动测试方案以及后续的数据处理,以及这个多步骤过程增加的工作量和复杂性。为了简化基于传感器的移动性测试以诊断 PD,我们分析了 262 名 PD 参与者和 50 名对照者的数据,他们在背部佩戴一个装有三轴加速度计和三轴陀螺仪的传感器来执行多项运动任务。我们使用包含一系列基于一组传感器特征训练的分类器的异构机器学习模型集,证明我们的模型能够有效地区分 PD 患者和对照组,无论是对于混合阶段的 PD(准确率为 92.6%)还是仅选择轻度 PD 的组(准确率为 89.4%)。省略对复杂运动任务的算法分段以及包含运动学特征会降低我们模型的诊断准确性。特征重要性分析表明,计时起立行走(TUG)任务贡献了最高收益的预测特征,仅对基于认知 TUG 作为单一运动任务的模型的准确性略有下降。我们的机器学习方法可以在不影响预测性能的情况下,大大简化仪器化运动测试。